Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.1.46

Depletion of Neuroguidin/CANu1 sensitizes human osteosarcoma U2OS cells to doxorubicin  

Park, Jin-Hee (Department of Biology, Kyung Hee University)
Sihn, Choong-Ryoul (Department of Biology, Kyung Hee University)
Lee, Yeon-Su (Research Institute, National Cancer Center)
Lee, Sung-Jae (Department of Biology, Kyung Hee University)
Kim, Sang-Hoon (Department of Biology, Kyung Hee University)
Publication Information
BMB Reports / v.44, no.1, 2011 , pp. 46-51 More about this Journal
Abstract
Osteosarcoma is a primary bone cancer which occurs mainly in children. Neuroguidin/CANu1 is a nucleolar protein involved in the maintenance of ribosomal structure. In this study, we investigated the effect of Neuroguidin/CANu1 depletion on the response of osteosarcoma cells to doxorubicin. In normal circumstances, Neuroguidin/CANu1 is localized at nucleoli, which translocates to nuclear foci in the presence of doxorubicin. shRNA knockdown of Neuroguidin/CANu1 did not affect cell viability in the absence of doxorubicin, but led to enhanced cytotoxicity in doxorubicin-treated cells. Doxorubicin increased the population of apoptotic cells by 3-fold in Neuroguidin/CANu1-depleted cells compared to that in control cells. Depletion of Neuroguidin/CANu1 mRNA induced the expression of p21 and the cleavage of PARP, leading to increased caspase-3/7 activity. Together, these results suggest that Neuroguidin/CANu1 is required for maintaining cellular homeostasis and may contribute to the improved efficiency of chemotherapy.
Keywords
Apoptosis; DNA damage; Doxorubicin; Neuroguidin/CANu1;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Derenzini, M., Montanaro, L. and Trere, D. (2008) What the nucleolus says to a tumour pathologist. Histopathology 54, 753-762.   DOI   ScienceOn
2 Meng, L., Lin, T. and Tsai, R. Y. (2008) Nucleoplasmic mobilization of nucleostemin stabilizes MDM2 and promotes G2-M progression and cell survival. J. Cell Sci. 121, 4037-4046.   DOI   ScienceOn
3 Ma, H. and Pederson, T. (2008) Nucleophosmin is a binding partner of nucleostemin in human osteosarcoma cells. Mol. Biol. Cell 19, 2870-2875.   DOI   ScienceOn
4 Jafarnejad, S. M., Mowla, S. J. and Matin, M. M. (2008) Knocking-down the expression of nucleostemin significantly decreases rate of proliferation of rat bone marrow stromal stem cells in an apparently p53-independent manner. Cell Prolif. 41, 28-35.   DOI   ScienceOn
5 Dai, M. S., Sun, X. X. and Lu, H. (2008) Aberrant expression of nucleostemin activates p53 and induces cell cycle arrest via inhibition of MDM2. Mol. Cell Biol. 28, 4365-4376.   DOI   ScienceOn
6 Woo, L. L., Futami, K., Shimamoto, A., Furuichi, Y. and Frank, K. M. (2006) The Rothmund-Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress. Exp. Cell Res. 312, 3443-3457.   DOI   ScienceOn
7 Otake, Y., Soundararajan, S., Sengupta, T. K., Kio, E. A., Smith, J. C., Pineda-Roman, M., Stuart, R. K., Spicer, E. K. and Fernandes, D. J. (2007) Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood 109, 3069-3075.
8 Kaelin, Jr. W. G. (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer 5, 689-698.   DOI   ScienceOn
9 Chan, D. A. and Giaccia, A. J. (2008) Targeting cancer cells by synthetic lethality: autophagy and VHL in cancer therapeutics. Cell Cycle 7, 2987-2990.   DOI
10 Bommi-Reddy, A. and Kaelin, Jr. W. G. (2010) Slaying RAS with a synthetic lethal weapon. Cell Res. 20, 119-121.   DOI   ScienceOn
11 Liu, S., Bishop, W. R. and Liu, M. (2003) Differential effects of cell cycle regulatory protein p21(WAF1/Cip1) on apoptosis and sensitivity to cancer chemotherapy. Drug Resist. Updat. 6, 183-195.   DOI   ScienceOn
12 Agrawal, S., Agarwal, M. L., Chatterjee-Kishore, M., Stark, G. R. and Chisolm, G. M. (2002) Stat1-dependent, p53-independent expression of p21(waf1) modulates oxysterolinduced apoptosis. Mol. Cell Biol. 22, 1981-1992.   DOI
13 Teraishi, F., Kadowaki, Y., Tango, Y., Kawashima, T., Umeoka, T., Kagawa, S., Tanaka, N. and Fujiwara, T. (2003) Ectopic p21sdi1 gene transfer induces retinoic acid receptor beta expression and sensitizes human cancer cells to retinoid treatment. Int. J. Cancer 103, 833-839.   DOI   ScienceOn
14 Zhang, S., Hemmerich, P. and Grosse, F. (2004) Nucleolar localization of the human telomeric repeat binding factor 2 (TRF2). J. Cell Sci. 117, 3935-3945.   DOI   ScienceOn
15 Lincet, H., Poulain, L., Remy, J. S., Deslandes, E., Duigou, F., Gauduchon, P. and Staedel, C. (2000) The p21 (cip1/waf1) cyclin-dependent kinase inhibitor enhances the cytotoxic effect of cisplatin in human ovarian carcinoma cells. Cancer Lett. 161, 17-26.   DOI   ScienceOn
16 Qin, L. F. and Ng, I. O. (2001) Exogenous expression of p21(WAF1/CIP1) exerts cell growth inhibition and enhances sensitivity to cisplatin in hepatoma cells. Cancer Lett. 172, 7-15.   DOI   ScienceOn
17 Klibanov, S. A., O'Hagan, H. M. and Ljungman, M. (2001) Accumulation of soluble and nucleolar-associated p53 proteins following cellular stress. J. Cell Sci. 114, 1867-1873.
18 Mayer, C. and Grummt, I. (2005) Cellular stress and nucleolar function. Cell Cycle 4, 1036-1038.   DOI
19 Montanaro, L., Trere, D. and Derenzini, M. (2008) Nucleolus, ribosomes, and cancer. Am. J. Pathol. 173, 301-310.   DOI   ScienceOn
20 Blander, G., Zalle, N., Daniely, Y., Taplick, J., Gray, M. D. and Oren, M. (2002) DNA damage-induced translocation of the Werner helicase is regulated by acetylation. J. Biol. Chem. 277, 50934-50940.   DOI   ScienceOn
21 Condemine, W., Takahashi, Y. and Le, B. M. (2007) A nucleolar targeting signal in PML-I addresses PML to nucleolar caps in stressed or senescent cells. J. Cell Sci. 120, 3219-3227.   DOI   ScienceOn
22 Kurki, S., Latonen, L. and Laiho, M. (2003) Cellular stress and DNA damage invoke temporally distinct Mdm2, p53 and PML complexes and damage-specific nuclear relocalization. J. Cell Sci. 116, 3917-3925.   DOI   ScienceOn
23 Lambert, L. A., Qiao, N., Hunt, K. K., Lambert, D. H., Mills, G. B., Meijer, L. and Keyomarsi, K. (2008) Autophagy: a novel mechanism of synergistic cytotoxicity between doxorubicin and roscovitine in a sarcoma model. Cancer Res. 68, 7966-7974.   DOI   ScienceOn
24 Alastalo, T. P., Hellesuo, M., Sandqvist, A., Hietakangas, V., Kallio, M. and Sistonen, L. (2003) Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70. J. Cell Sci. 116, 3557-3570.   DOI   ScienceOn
25 Yuan, X. W., Zhu, X. F., Huang, X. F., Sheng, P. Y., He, A. S., Yang, Z. B., Deng, R., Feng, G. K. and Liao, W. M. (2007) Interferon-alpha enhances sensitivity of human osteosarcoma U2OS cells to doxorubicin by p53-dependent apoptosis. Acta Pharmacol. Sin. 28, 1835-1841.   DOI   ScienceOn
26 Bruland, O. S. and Pihl, A. (1997) On the current management of osteosarcoma. A critical evaluation and a proposal for a modified treatment strategy. Eur. J. Cancer 33, 1725-1731.   DOI   ScienceOn
27 Zucchi, R. and Danesi, R. (2003) Cardiac toxicity of antineoplastic anthracyclines. Curr. Med. Chem. Anticancer Agents 3, 151-171.   DOI   ScienceOn
28 Schimmel, K. J., Richel, D. J., van den Brink, R. B. and Guchelaar, H. J. (2004) Cardiotoxicity of cytotoxic drugs. Cancer Treat. Rev. 30, 181-191.   DOI   ScienceOn
29 Daw, N. C., Billups, C. A., Rodriguez-Galinodo, C., McCarville M. B., Rao, B. N., Cain, A. M., Jenkins, J. J., Neel, M. D. and Meyer W. H. (2006) Metastatic osteosarcoma. Cancer 106, 403-412.   DOI   ScienceOn
30 Bielack, S. S., Kempf-Bielack, B., Delling, G., Exner, G. U., Flege, S., Helmke, K., Kotz, R., Salzer-Kuntschik, M., Werner, M., Winkelmann, W., Zoubek, A., Jurgens, H. and Winkler, K. (2002) Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol. 20, 776-790.   DOI   ScienceOn
31 Jung, M. Y., Lorenz, L. and Richter, J. D. (2006) Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol. Cell Biol. 26, 4277-4287.   DOI   ScienceOn
32 Niswander, L. M. and Kim, S. Y. (2010) Stratifying osteosarcoma: minimizing and maximizing therapy. Curr. Oncol. Rep. 12, 266-270.   DOI   ScienceOn
33 Orosco, A., Fromigue, O., Bazille, C., Entz-Werle, N., Levillain, P., Marie, P. J. and Modrowski, D. (2007) Syndecan-2 affects the basal and chemotherapy-induced apoptosis in osteosarcoma. Cancer Res. 67, 3708-3715.   DOI   ScienceOn
34 Sihn, C. R., Lee, Y. S., Jeong, J. S., Park, K. and Kim, S. H. (2008) CANu1, a novel nucleolar protein, accumulated on centromere in response to DNA damage. Genes Cells 13, 787-796.   DOI   ScienceOn
35 Tembe, V. and Henderson, B. R. (2007) Protein trafficking in response to DNA damage. Cell Signal 19, 1113-1120.   DOI   ScienceOn
36 Mo, Y. Y., Yu, Y., Shen, Z. and Beck, W. T. (2002) Nucleolar delocalization of human topoisomerase I in response to topotecan correlates with sumoylation of the protein. J. Biol. Chem. 277, 2958-2964.   DOI   ScienceOn
37 Daniely, Y., Dimitrova, D. D. and Borowiec, J. A. (2002) Stress-dependent nucleolin mobilization mediated by p53-nucleolin complex formation. Mol. Cell Biol. 22, 6014-6022.   DOI
38 Wang, Y. A., Johnson, S. K., Brown, B. L. and Dobson, P. R. (2009) Differential enhancement of the anti-cancer effect of doxorubicin by Akt inhibitors on human breast cancer cells with differing genetic backgrounds. Oncol. Rep. 21, 437-442.
39 Kaelin, Jr. W. G. (2009) Synthetic lethality: a framework for the development of wiser cancer therapeutics. Genome Med. 1, 99.   DOI   ScienceOn