Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.1.28

The microRNA expression profiles of mouse mesenchymal stem cell during chondrogenic differentiation  

Yang, Bo (Laboratory of Biomechanics, Department of Anatomy, the Third Military Medical University)
Guo, Hongfeng (Laboratory of Biomechanics, Department of Anatomy, the Third Military Medical University)
Zhang, Yulan (Laboratory of Biomechanics, Department of Anatomy, the Third Military Medical University)
Dong, Shiwu (Laboratory of Biomechanics, Department of Anatomy, the Third Military Medical University)
Ying, Dajun (Laboratory of Biomechanics, Department of Anatomy, the Third Military Medical University)
Publication Information
BMB Reports / v.44, no.1, 2011 , pp. 28-33 More about this Journal
Abstract
MicroRNAs are potential key regulators in mesenchymal stem cells chondrogenic differentiation. However, there were few reports about the accurate effects of miRNAs on chondrogenic differentiation. To investigate the mechanisms of miRNAs-mediated regulation during the process, we performed miRNAs microarray in MSCs at four different stages of TGF-${\beta}3$-induced chondrogenic differentiation. We observed that eight miRNAs were significantly up-regulated and five miRNAs were downregulated. Interestingly, we found two miRNAs clusters, miR-143/145 and miR-132/212, kept on down-regulation in the process. Using bioinformatics approaches, we analyzed the target genes of these differentially expressed miRNAs and found a series of them correlated with the process of chondrogenesis. Furthermore, the qPCR results showed that the up-regulated (or down-regulated) expression of miRNAs were inversely associated with the expression of predicted target genes. Our results first revealed the expression profiles of miRNAs in chondrogenic differentiation of MSCs and provided a new insight on complicated regulation mechanisms of chondrogenesis.
Keywords
Chondrogenic differentiation; Microarray; MicroRNA; Target gene;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Wienholds, E., Kloosterman, W. P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., de Bruijn, E., Horvitz, H. R., Kauppinen, S. and Plasterk, R. H. (2005) MicroRNA expression in zebrafish embryonic development. Science 309, 310-311.   DOI   ScienceOn
2 Mauck, R. L., Byers, B. A., Yuan, X. and Tuan, R. S. (2007) Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D culture in response to dynamic loading. Biomech. Model. Mechanobiol. 6, 113-125.   DOI   ScienceOn
3 Hankemeier, S., van Griensven, M., Ezechieli, M., Barkhausen, T., Austin, M., Jagodzinski, M., Meller, R., Bosch, U., Krettek, C. and Zeichen, J. (2007) Tissue engineering of tendons and ligaments by human bone marrow stromal cells in a liquid fibrin matrix in immunodeficient rats: results of a histologic study. Arch. Orthop. Traum. Su. 127, 815-821.   DOI   ScienceOn
4 Kronenberg, H. M. (2006) PTHrP and skeletal development. Ann. N. Y. Acad. Sci. 1068, 1-13.   DOI   ScienceOn
5 Wakitani, S., Imoto, K., Yamamoto, T., Saito, M., Murata, N. and Yoneda, M. (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 10, 199-206.   DOI   ScienceOn
6 Wakitani, S., Mitsuoka, T., Nakamura, N., Toritsuka, Y., Nakamura, Y. and Horibe, S. (2004) Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant 13, 595-600.   DOI   ScienceOn
7 Butnariu-Ephrat, M., Robinson, D., Mendes, D. G., Halperin, N. and Nevo, Z. (1996) Resurfacing of goat articular cartilage by chondrocytes derived from bone marrow. Clin. Orthop. Relat. Res. 330, 234-243.   DOI
8 Cui, J. H., Park, S. R., Park, K., Choi, B. H. and Min, B. H. (2007) Preconditioning of mesenchymal stem cells with low-intensity ultrasound for cartilage formation in vivo. Tissue Eng. 13, 351-360.   DOI   ScienceOn
9 Lewis, B. P., Burge, C. B. and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20.   DOI   ScienceOn
10 Barry, F., Boynton, R. E., Liu, B. and Murphy, J. M. (2001) Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp. Cell Res. 268, 189-200.   DOI   ScienceOn
11 Arinzeh, T. L. (2005) Mesenchymal stem cells for bone repair: preclinical studies and potential orthopedic applications. Foot Ankle Clin. 10, 651-665.   DOI   ScienceOn
12 Helder, M. N., Knippenberg, M., Klein-Nulend, J. and Wuisman, P. I. (2007) Stem cells from adipose tissue allow challenging new concepts for regenerative medicine. Tissue Eng. 13, 1799-1808.   DOI   ScienceOn
13 Fisher, M. C., Li, Y., Seghatoleslami, M. R., Dealy, C. N. and Kosher, R. A. (2006) Heparan sulfate proteoglycans including syndecan-3 modulate BMP activity during limb cartilage differentiation. Matrix Biol. 25, 27-39.   DOI   ScienceOn
14 Trubiani, O., Orsini, G., Caputi, S. and Piatelli, A. (2006) Adult mesenchymal stem cells in dental research: a new approach for tissue engineering. Int. J. Immunopathol Pharmacol. 19, 451-460.   DOI
15 Lee, J. W., Kim, Y. H., Kim, S. H., Han, S. H. and Hahn, S. B. (2004) Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med. J. 45 Suppl, 41-47.   DOI
16 Oh, C. D., Chang, S. H., Yoon, Y. M., Lee, S. J., Lee, Y. S., Kang, S. S. and Chun, J. S. (2000) Opposing role of mitogen-activated protein kinase subtypes, erk-1/2 and p38, in the regulation of chondrogenesis of mesenchymes. J. Biol. Chem. 275, 5613-5619.   DOI   ScienceOn
17 Soleimani, M. and Nadri, S. (2009) A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat. Protoc. 4, 102-106.   DOI   ScienceOn
18 Ushita, M., Saito, T., Ikeda, T., Yano, F., Higashikawa, A., Ogata, N., Chung, U., Nakamura, K. and Kawaguchi, H. (2009) Transcriptional induction of SOX9 by NF-kappaB family member RelA in chondrogenic cells. Osteoarthritis Cartilage 17, 1065-1075.   DOI   ScienceOn
19 Retting, K. N., Song, B., Yoon, B. S. and Lyons, K. M. (2009) BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development 136, 1093-1104.   DOI   ScienceOn
20 Gaur, T., Lengner, C. J., Hovhannisyan, H., Bhat, R. A., Bodine, P. V., Komm, B. S., Javed, A., van Wijnen, A. J., Stein, J. L., Stein, G. S. and Lian, J. B. (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem. 280, 33132-33140.   DOI   ScienceOn
21 Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Muth, A. N., Lee, T. H., Miano, J. M., Ivey, K. N. and Srivastava, D. (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460, 705-710.
22 Akao, Y., Nakagawa, Y., Hirata, I., Iio, A., Itoh, T., Kojima, K., Nakashima, R., Kitade, Y. and Naoe, T. (2010) Role of anti-oncomirs miR-143 and -145 in human colorectal tumors. Cancer Gene Ther. 17, 398-408.   DOI   ScienceOn
23 Xu, N., Papagiannakopoulos, T., Pan, G. J., Thomson, J. A. and Kosik, K. S. (2009) MicroRNA-145 Regulates OCT4, SOX2, and KLF4 and Represses Pluripotency in Human Embryonic Stem Cells. Cell 137, 647-658.   DOI   ScienceOn
24 Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H. and Impey, S. (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc. Natl. Acad. Sci. U.S.A. 102, 16426-16431.   DOI   ScienceOn
25 Hornstein, E., Mansfield, J. H., Yekta, S., Hu, J. K. H., Harfe, B. D., McManus, M. T., Baskerville, S., Bartel, D. P. and Tabin, C. J. (2005) The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438, 671-674.   DOI   ScienceOn
26 Tuddenham, L., Wheeler, G., Ntounia-Fousara, S., Waters, J., Hajihosseini, M. K., Clark, I. and Dalmay, T. (2006) The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett 580, 4214-4217.   DOI   ScienceOn
27 Kobayashi, T., Lu, J., Cobb, B. S., Rodda, S. J., McMahon, A. P., Schipani, E., Merkenschlager, M. and Kronenberg, H. M. (2008) Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc. Natl. Acad. Sci. U.S.A. 105, 1949-1954.   DOI   ScienceOn
28 Lin, E. A., Kong, L., Bai, X. H., Luan, Y. and Liu, C. J. (2009) miR-199a, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J. Biol. Chem. 284, 11326-11335.   DOI   ScienceOn
29 Nielsen, J. A., Lau, P., Maric, D., Barker, J. L. and Hudson, L. D. (2009) Integrating microRNA and mRNA expression profiles of neuronal progenitors to identify regulatory networks underlying the onset of cortical neurogenesis. Bmc. Neurosci. 10, 10-98.   DOI   ScienceOn
30 Pais, H., Nicolas, F. E., Soond, S. M., Swingler, T. E., Clark, I. M., Chantry, A., Moulton, V. and Dalmay, T. (2010) Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level. RNA 16, 489-494.   DOI   ScienceOn
31 Ikeda, T., Kawaguchi, H., Kamekura, S., Ogata, N., Mori, Y., Nakamura, K., Ikegawa, S. and Chung, U. I. (2005) Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. J. Bone Miner. Metab. 23, 337-340.   DOI
32 Smits, P., Li, P., Mandel, J., Zhang, Z., Deng, J. M., Behringer, R. R., de Crombrugghe, B. and Lefebvre, V. (2001) The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev. Cell 1, 277-290.   DOI   ScienceOn
33 Chen, C. F., Ridzon, D., Lee, C. T., Blake, J., Sun, Y. M. and Strauss, W. M. (2007) Defining embryonic stem cell identity using differentiation-related microRNAs and their potential targets. Mamm. Genome 18, 316-327.   DOI
34 Cheng, A. M., Byrom, M. W., Shelton, J. and Ford, L. P. (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic. Acids. Res. 33, 1290-1297.   DOI   ScienceOn
35 Chen, C. Z., Li, L., Lodish, H. F. and Bartel, D. P. (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83-86.   DOI   ScienceOn
36 Lakshmipathy, U., Love, B., Goff, L. A., Jornsten, R., Graichen, R., Hart, R. P. and Chesnut, J. D. (2007) MicroRNA expression pattern of undifferentiated and differentiated human embryonic stem cells. Stem Cells Dev. 16, 1003-1016.   DOI   ScienceOn
37 Goff, L. A., Boucher, S., Ricupero, C. L., Fenstermacher, S., Swerdel, M., Chase, L. G., Adams, C. C., Chesnut, J., Lakshmipathy, U. and Hart, R. P. (2008) Differentiating human multipotent mesenchymal stromal cells regulate microRNAs: prediction of microRNA regulation by PDGF during osteogenesis. Experimental Hematology 36, 1354-1369.   DOI   ScienceOn
38 Ortega, F. J., Moreno-Navarrete, J. M., Pardo, G., Sabater, M., Hummel, M., Ferrer, A., Rodriguez-Hermosa, J. I., Ruiz, B., Ricart, W., Peral, B. and Fernandez-Real, J. M. (2010) MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. Plos One 5, e9022.   DOI   ScienceOn
39 Esau, C., Kang, X., Peralta, E., Hanson, E., Marcusson, E. G., Ravichandran, L. V., Sun, Y., Koo, S., Perera, R. J., Jain, R., Dean, N. M., Freier, S. M., Bennett, C. F., Lollo, B. and Griffey, R. (2004) MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 279, 52361-52365.   DOI   ScienceOn