Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.1.11

Small RNA biology is systems biology  

Jost, Daniel (Department of Physics, FAS Center for Systems Biology, Harvard University)
Nowojewski, Andrzej (Department of Physics, FAS Center for Systems Biology, Harvard University)
Levine, Erel (Department of Physics, FAS Center for Systems Biology, Harvard University)
Publication Information
BMB Reports / v.44, no.1, 2011 , pp. 11-21 More about this Journal
Abstract
During the last decade small regulatory RNA (srRNA) emerged as central players in the regulation of gene expression in all kingdoms of life. Multiple pathways for srRNA biogenesis and diverse mechanisms of gene regulation may indicate that srRNA regulation evolved independently multiple times. However, small RNA pathways share numerous properties, including the ability of a single srRNA to regulate multiple targets. Some of the mechanisms of gene regulation by srRNAs have significant effect on the abundance of free srRNAs that are ready to interact with new targets. This results in indirect interactions among seemingly unrelated genes, as well as in a crosstalk between different srRNA pathways. Here we briefly review and compare the major srRNA pathways, and argue that the impact of srRNA is always at the system level. We demonstrate how a simple mathematical model can ease the discussion of governing principles. To demonstrate these points we review a few examples from bacteria and animals.
Keywords
Mathematical modeling; Post-transcriptional regulation; Small regulatory RNAs; Systems biology;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Khurana, J. S. and Theurkauf, W. E. (2008) piRNA function in germline development (July 30, 2008), StemBook, ed. The Stem Cell Research Community, StemBook, doi/ 10.3824/stembook.1.12.1, http://www.stembook.org.   DOI
2 Jacob, F. and Monod, J. (1961) Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318-356.   DOI
3 Lee, R. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 175, 843-854.
4 Wightman, B., Ha, I. and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855-862.   DOI   ScienceOn
5 Argaman, L., Hershberg, R., Vogel, J., Bejerano, G., Wagner, E. H., Margalit, H. and Altuvia, S. (2001) Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Current Biology. 11, 941-950.   DOI   ScienceOn
6 Wassarman, K. M., Repoila, F., Rosenow, C., Storz, G. and Gottesman, S. (2001) Identification of novel small RNAs using comparative genomics and microarrays. Genes & Development 15, 1637-1651.   DOI   ScienceOn
7 Rivas, E., Klein, R. J., Jones, T. A. and Eddy, S. R. (2001) Computational identification of noncoding RNAs in E. coli by comparative genomics. Current Biology 11, 1369-1373.   DOI   ScienceOn
8 Larsson, E., Sander, C. and Marks, D. (2010) mRNA turnover rate limits siRNA and microRNA efficacy. Mol. Syst. Biol. 6, 433.
9 Grimm, D., Streetz, K. L., Jopling, C. L., Storm, T. A., Pandey, K., Davis, C. R., Marion, P., Salazar, F. and Kay, M. A. (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537-541.   DOI   ScienceOn
10 Khan, A. A., Betel, D., Miller, M. L., Sander, C., Leslie, C. S. and Marks, D. S. (2009) Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nat. Biotech. 27, 549-555.   DOI
11 Sittka, A., Lucchini, S., Papenfort, K., Sharma, C. M., Rolle, K., Binnewies, T. T., Hinton, J. C. D. and Vogel, J. (2008) Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet. 4, e1000163.   DOI   ScienceOn
12 Jousselin, A., Metzinger, L. and Felden, B. (2009) On the facultative requirement of the bacterial RNA chaperone, Hfq. Trends. Microbiol. 17, 399-405.   DOI   ScienceOn
13 Le Derout, J., Boni, I. V., Regnier, P. and Hajnsdorf, E. (2010) Hfq affects mRNA levels independently of degradation. BMC Mol. Biol. 11, 17.   DOI   ScienceOn
14 Valentin-Hansen, P., Eriksen, M. and Udesen, C. (2004) The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol. Microbiol. 51, 1525-1533.   DOI   ScienceOn
15 Ambros, V. (1989) A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell 57, 49-57.   DOI   ScienceOn
16 Taniguchi, Y., Choi, P. J., Li, G., Chen, H., Babu, M., Hearn, J., Emili, A. and Xie, X. S. (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533-538.   DOI   ScienceOn
17 Hussein, R. and Lim, H. N. (2010) Disruption of small RNA signaling caused by competition for Hfq. Proc. Natl. Acad. Sci. U.S.A. doi:10.1073/pnas.1010082108.   DOI   ScienceOn
18 Ebert, M. S. and Sharp, P. A. (2010) MicroRNA sponges: Progress and possibilities. RNA 16, 2043-2050.   DOI   ScienceOn
19 Slack, F. J., Basson, M., Liu, Z., Ambros, V., Horvitz, H. R. and Ruvkun, G. (2000) The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5, 659-669.   DOI   ScienceOn
20 Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J. and Plasterk, R. H. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes & Development 15, 2654-2659.   DOI   ScienceOn
21 Grishok, A., Pasquinelli, A. E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D. L., Fire, A., Ruvkun, G. and Mello, C. C. (2001) Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing. Cell 106, 23-34.   DOI   ScienceOn
22 Lee, Y. S., Nakahara, K., Pham, J. W., Kim, K., He, Z., Sontheimer, E. J. and Carthew, R. W. (2004) Distinct Roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA Silencing Pathways. Cell 117, 69-81.   DOI   ScienceOn
23 Tolia, N. H. and Joshua-Tor, L. (2007) Slicer and the Argonautes. Nat. Chem. Biol. 3, 36-43.   DOI   ScienceOn
24 Masse, E. and Gottesman, S. (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 99, 4620-4625.   DOI   ScienceOn
25 Jackson, A. L. and Linsley, P. S. (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov. 9, 57-67.   DOI   ScienceOn
26 Jackson, A. L., Bartz, S. R., Schelter, J., Kobayashi, S. V., Burchard, J., Mao, M., Li, B., Cavet, G. and Linsley, P. S. (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol 21, 635-637.   DOI   ScienceOn
27 Yi, R., Doehle, B. P., Qin, Y., Macara, I. G. and Cullen, B. R. (2005) Overexpression of Exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA 11, 220-226.   DOI   ScienceOn
28 Mey, A. R., Craig, S. A. and Payne, S. M. (2005) Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of RyhB in biofilm formation. Infect. Immun. 73, 5706-5719.   DOI   ScienceOn
29 Masse, E., Vanderpool, C. K. and Gottesman, S. (2005) Effect of RyhB small RNA on global iron use in Escherichia coli. J. Bacteriol. 187, 6962-6971.   DOI   ScienceOn
30 Jacques, J., Jang, S., Prevost, K., Desnoyers, G., Desmarais, M., Imlay, J. and Masse, E. (2006) RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli. Mol. Microbiol. 62, 1181-1190.   DOI   ScienceOn
31 Wyckoff, E. E., Mey, A. R. and Payne, S. M. (2007) Iron acquisition in Vibrio cholerae. Biometals 20, 405-416.   DOI
32 Andrews, S. C., Robinson, A. K. and Rodriguez-Quinones, F. (2003) Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215-237.   DOI   ScienceOn
33 Prevost, K., Salvail, H., Desnoyers, G., Jacques, J., Phaneuf, E. and Masse, E. (2007) The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis. Mol. Microbiol. 64, 1260-1273.   DOI   ScienceOn
34 Vecerek, B., Moll, I. and Blasi, U. (2007) Control of Fur synthesis by the non-coding RNA RyhB and iron-responsive decoding. EMBO J. 26, 965-975.   DOI   ScienceOn
35 Semsey, S., Andersson, A. M. C., Krishna, S., Jensen, M. H., Masse, E. and Sneppen, K. (2006) Genetic regulation of fluxes: iron homeostasis of Escherichia coli. Nucleic. Acids. Res. 34, 4960-4967.   DOI   ScienceOn
36 Svenningsen, S. L., Tu, K. C. and Bassler, B. L. (2009) Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing. EMBO J. 28, 429-439.   DOI   ScienceOn
37 Long, T., Tu, K. C., Wang, Y., Mehta, P., Ong, N. P., Bassler, B. L. and Wingreen, N. S. (2009) Quantifying the integration of quorum-sensing signals with single-cell resolution. PLoS Biol. 7, e68.   DOI   ScienceOn
38 Thomas, M., Lieberman, J. and Lal, A. (2010) Desperately seeking microRNA targets. Nat. Struct. Mol. Biol. 17, 1169-1174.   DOI   ScienceOn
39 Baek, D., Villén, J., Shin, C., Camargo, F. D., Gygi, S. P. and Bartel, D. P. (2008) The impact of microRNAs on protein output. Nature 455, 64-71.   DOI   ScienceOn
40 Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R. and Rajewsky, N. (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58-63.   DOI   ScienceOn
41 Plumbridge, J. and Pellegrini, O. (2004) Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP. Mol. Microbiol. 52, 437-449.   DOI   ScienceOn
42 Stark, A., Brennecke, J., Bushati, N., Russell, R. B. and Cohen, S. M. (2005) Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 123, 1133-1146.   DOI   ScienceOn
43 Jan, C. H., Friedman, R. C., Ruby, J. G. and Bartel, D. P. (2010) Formation, regulation and evolution of Caenorhabditis elegans 3'UTRs. Nature doi:10.1038/nature09616.   DOI   ScienceOn
44 Overgaard, M., Johansen, J., Moller-Jensen, J. and Valentin-Hansen, P. (2009) Switching off small RNA regulation with trap-mRNA. Mol. Microbiol. 73, 790-800.   DOI   ScienceOn
45 Nowojewski, A. and Levine, E. Manuscript in preparation.
46 Majdalani, N., Cunning, C., Sledjeski, D., Elliott, T. and Gottesman, S. (1998) DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc. Natl. Acad. Sci. U.S.A. 95, 12462-12467.   DOI
47 Zhang, A., Altuvia, S., Tiwari, A., Argaman, L., Hengge-Aronis, R. and Storz, G. (1998) The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO J. 17, 6061-6068.   DOI   ScienceOn
48 Basineni, S. R., Madhugiri, R., Kolmsee, T., Hengge, R. and Klug, G. (2009) The influence of Hfq and ribonucleases on the stability of the small non-coding RNA OxyS and its target rpoS in E. coli is growth phase dependent. RNA Biol. 6, 584-594.   DOI
49 Repoila, F., Majdalani, N. and Gottesman, S. (2003) Small non-coding RNAs, co-ordinators of adaptation processes in Escherichia coli: the RpoS paradigm. Mol. Microbiol 48, 855-861.   DOI   ScienceOn
50 Madhugiri, R., Basineni, S. R. and Klug, G. (2010) Turnover of the small non-coding RNA RprA in E. coli is influenced by osmolarity. Mol. Genet. Genomics. 284, 307-318.   DOI
51 Repoila, F. and Gottesman, S. (2001) Signal Transduction Cascade for Regulation of RpoS: Temperature Regulation of DsrA. J. Bacteriol. 183, 4012-4023.   DOI   ScienceOn
52 Repoila, F. and Gottesman, S. (2003) Temperature Sensing by the dsrA Promoter. J. Bacteriol. 185, 6609-6614.   DOI
53 Lenz, D., Mok, K., Lilley, B., Kulkarni, R., Wingreen, N. and Bassler, B. (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118, 69-82.   DOI   ScienceOn
54 Tu, K. C. and Bassler, B. L. (2007) Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi. Genes Dev. 21, 221-233.   DOI   ScienceOn
55 Figueroa-Bossi, N., Valentini, M., Malleret, L. and Bossi, L. (2009) Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. Genes & Development 23, 2004 -2015.   DOI   ScienceOn
56 Levine, E., Zhang, Z., Kuhlman, T. and Hwa, T. (2007) Quantitative characteristics of gene regulation by small RNA. PLoS Biol. 5, e229.   DOI
57 Mitarai, N., Andersson, A. M., Krishna, S., Semsey, S. and Sneppen, K. (2007) Efficient degradation and expression prioritization with small RNAs. Phys. Biol. 4, 164-171.   DOI   ScienceOn
58 Shimoni, Y., Friedlander, G., Hetzroni, G., Niv, G., Altuvia, S., Biham, O. and Margalit, H. (2007) Regulation of gene expression by small non-coding RNAs: a quantitative view. Mol. Syst. Biol. 3, 138.
59 Levine, E., Huang, M., Huang, Y., Kuhlman, T., Zhang, Z. and Hwa, T. On noise and silence in gene regulation by small RNA. In submission.
60 Mehta, P., Goyal, S. and Wingreen, N. S. (2008) A quantitative comparison of sRNA-based and protein-based gene regulation. Mol. Syst. Biol. 4, 221.
61 Lease, R. A. and Belfort, M. (2000) A trans-acting RNA as a control switch in Escherichia coli: DsrA modulates function by forming alternative structures. Proc. Natl. Acad. Sci. U.S.A. 97, 9919-9924.   DOI   ScienceOn
62 Fang, F. C. and Rimsky, S. (2008) New insights into transcriptional regulation by H-NS. Current Opinion in Microbiology. 11, 113-120.   DOI   ScienceOn
63 Amit, R., Oppenheim, A. B. and Stavans, J. (2003) Increased Bending Rigidity of Single DNA Molecules by H-NS, a Temperature and Osmolarity Sensor. Biophysical Journal 84, 2467-2473.   DOI   ScienceOn
64 Dorman, C. J. (2007) H-NS, the genome sentinel. Nat. Rev. Micro. 5, 157-161.   DOI   ScienceOn
65 Padalon-Brauch, G., Hershberg, R., Elgrably-Weiss, M., Baruch, K., Rosenshine, I., Margalit, H. and Altuvia, S. (2008) Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic. Acids. Res. 36, 1913-1927.   DOI   ScienceOn
66 Schiano, C. A., Bellows, L. E. and Lathem, W. W. (2010) The small RNA chaperone Hfq is required for the virulence of Yersinia pseudotuberculosis. Infect. Immun. 78, 2034-2044.   DOI   ScienceOn
67 Chabelskaya, S., Gaillot, O. and Felden, B. (2010) A Staphylococcus aureus small RNA is required for bacterial virulence and regulates the expression of an immune-evasion molecule. PLoS Pathog. 6, e1000927.   DOI   ScienceOn
68 Hutvagner, G. and Zamore, P. D. (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056-2060.   DOI   ScienceOn
69 Podkaminski, D. and Vogel, J. (2010) Small RNAs promote mRNA stability to activate the synthesis of virulence factors. Mol. Microbiol. 78, 1327-1331.   DOI   ScienceOn
70 Hammond, S. M., Bernstein, E., Beach, D. and Hannon, G. J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293-296.   DOI   ScienceOn
71 Liu, J., Carmell, M. A., Rivas, F. V., Marsden, C. G, Thomson, J. M., Song, J., Hammond, S. M., Joshua-Tor, L. and Hannon, G. J. (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437-1441.   DOI   ScienceOn
72 Haley, B. and Zamore, P. D. (2004) Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol. 11, 599-606.   DOI   ScienceOn
73 Arvey, A., Larsson, E., Sander, C., Leslie, C. S. and Marks, D. S. (2010) Target mRNA abundance dilutes microRNA and siRNA activity. Mol. Syst. Biol. 6, 363.
74 Masse, E., Escorcia, F. E. and Gottesman, S. (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev. 17, 2374-2383.   DOI   ScienceOn
75 Sijen, T., Steiner, F. A., Thijssen, K. L. and Plasterk, R. H. A. (2007) Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 2007, 315, 244-247.   DOI
76 Sijen, T., Fleenor, J., Simmer, F., Thijssen, K. L., Parrish, S., Timmons, L., Plasterk, R. H. and Fire, A. (2001) On the Role of RNA Amplification in dsRNA-Triggered Gene Silencing. Cell 107, 465-476.   DOI   ScienceOn
77 Aiba, H. (2007) Mechanism of RNA silencing by Hfq-binding small RNAs. Current Opinion in Microbiology 10, 134-139.   DOI   ScienceOn
78 Brennecke, J., Aravin, A. A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R. and Hannon, G. J. (2007) Discrete Small RNA-Generating Loci as Master Regulators of Transposon Activity in Drosophila. Cell 128, 1089-1103.   DOI   ScienceOn
79 Hunter, C. P., Winston, W. M., Molodowitch, C., Feinberg, E. H., Shih, J., Sutherlin, M., Wright, A. J. and Fitzgerald, M. C. (2006) Systemic RNAi in Caenorhabditis elegans. Cold Spring Harb. Symp. Quant. Biol. 71, 95-100.   DOI   ScienceOn
80 Gottesman, S. (2005) Micros for microbes: non-coding regulatory RNAs in bacteria. Trends in Genetics 21, 399-404.   DOI   ScienceOn
81 Gottesman, S., McCullen, C. A., Guillier, M., Vanderpool, C. K., Majdalani, N., Benhammou, J., Thompson, K. M., FitzGerald, P. C., Sowa, N. A. and FitzGerald, D. J. (2006) Small RNA regulators and the bacterial response to stress. Cold Spring Harb. Symp. Quant. Biol. 71, 1-11.   DOI   ScienceOn
82 Geissmann, T., Possedko, M., Huntzinger, E., Fechter, P., Ehresmann, C. and Romby, P. (2006) Regulatory RNAs as mediators of virulence gene expression in bacteria. Handb Exp. Pharmacol. 173, 9-43.   DOI
83 Murphy, E. R. and Payne, S. M. (2007) RyhB, an iron-responsive small RNA molecule, regulates Shigella dysenteriae virulence. Infect. Immun. 75, 3470-3477.   DOI   ScienceOn
84 Tam, O. H., Aravin, A. A., Stein, P., Girard, A., Murchison, E. P., Cheloufi, S., Hodges, E., Anger, M., Sachidanandam, R., Schultz, R. M. and Hannon, G. J. (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534-538.   DOI   ScienceOn
85 Chung, W., Okamura, K., Martin, R. and Lai, E. C. (2008) Endogenous RNA Interference Provides a Somatic Defense against Drosophila Transposons. Current Biology 18, 795-802.   DOI   ScienceOn
86 Watanabe, T., Totoki, Y., Toyoda, A., Kaneda, M., Kuramochi-Miyagawa, S., Obata, Y., Chiba, H., Kohara, Y., Kono, T., Nakano, T., Surani, M. A., Sakaki, Y. and Sasaki, H. (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539-543.   DOI   ScienceOn
87 Ketting, R. F., Haverkamp, T. H. A., van Luenen, H. G. A. M. and Plasterk, R. H. A. (1999) mut-7 of C. elegans, Required for Transposon Silencing and RNA Interference, Is a Homolog of Werner Syndrome Helicase and RNaseD. Cell 99, 133-141.   DOI   ScienceOn
88 Tabara, H., Sarkissian, M., Kelly, W. G., Fleenor, J., Grishok, A., Timmons, L., Fire, A. and Mello, C. C. (1999) The rde-1 Gene, RNA Interference, and Transposon Silencing in C. elegans. Cell 99, 123-132.   DOI   ScienceOn
89 Ghildiyal, M., Seitz, H., Horwich, M. D., Li, C., Du, T., Lee, S., Xu, J., Kittler, E. L. W., Zapp, M. L., Weng, Z. and Zamore, P. D. (2008) Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320, 1077-1081.   DOI   ScienceOn
90 Hammond, S. M., Bernstein, E., Beach, D. and Hannon, G. J. (2000) An RNA-directed nuclease mediates posttranscriptional gene silencing in Drosophila cells. Nature 404, 293-296.   DOI   ScienceOn
91 Zamore, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000) RNAi: Double-Stranded RNA Directs the ATPDependent Cleavage of mRNA at 21 to 23 Nucleotide Intervals. Cell 101, 25-33.   DOI   ScienceOn
92 Pak, J. and Fire, A. (2007) Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315, 241-244.   DOI   ScienceOn
93 Aravin, A. A., Hannon, G. J. and Brennecke, J. (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318, 761-764.   DOI   ScienceOn
94 Reynolds, S. and Ruohola-Baker, H. (2008) microRNA’s role in germline differentiation (September 15, 2008), Stem Book, ed. The Stem Cell Research Community, StemBook, doi/ 10.3824/stembook.1.17.1, http://www.stembook.org.   DOI
95 Croce, C. M. (2009) Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet 10, 704-714.   DOI   ScienceOn
96 Leung, A. K. L. and Sharp, P. A. (2010) MicroRNA functions in stress responses. Mol. Cell 40, 205-215.   DOI   ScienceOn
97 Lee, Y., Jeon, K., Lee, J., Kim, S. and Kim, V. N. (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663-4670.   DOI   ScienceOn
98 Lee, Y., Kim, M., Han, J., Yeom, K., Lee, S., Baek, S. H. and Kim, V. N. (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051-4060.   DOI   ScienceOn
99 Czech, B., Malone, C. D., Zhou, R., Stark, A., Schlingeheyde, C., Dus, M., Perrimon, N., Kellis, M., Wohlschlegel, J. A., Sachidanandam, R., Hannon, G. J. and Brennecke, J. (2008) An endogenous small interfering RNA pathway in Drosophila. Nature 453, 798-802.   DOI   ScienceOn
100 Okamura, K., Chung, W., Ruby, J. G., Guo, H., Bartel, D. P. and Lai, E. C. (2008) The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453, 803-806.   DOI   ScienceOn
101 Kawamura, Y., Saito, K., Kin, T., Ono, Y., Asai, K., Sunohara, T., Okada, T. N., Siomi, M. C. and Siomi, H. (2008) Drosophila endogenous small RNAs bind to Argonaute(thinsp)2 in somatic cells. Nature 453, 793-797.   DOI   ScienceOn
102 Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., Hayward, D. C., Ball, E. E., Degnan, B., Müller, P., Spring, J., Srinivasan, A., Fishman, M., Finnerty, J., Corbo, J., Levine, M., Leahy, P., Davidson, E. and Ruvkun, G. (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86-89.   DOI   ScienceOn
103 Okamura, K., Balla, S., Martin, R., Liu, N. and Lai, E. C. (2008) Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat. Struct. Mol. Biol. 15, 581-590.   DOI   ScienceOn
104 Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.   DOI   ScienceOn
105 Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R. and Ruvkun, G. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901-906.   DOI   ScienceOn
106 Ghildiyal, M. and Zamore, P. D. (2009) Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94-108.   DOI   ScienceOn
107 Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233.   DOI   ScienceOn
108 Alvarez-Garcia, I. and Miska, E. A. (2005) MicroRNA functions in animal development and human disease. Development 132, 4653-4662.   DOI   ScienceOn
109 Hagen, J. W. and Lai, E. C. (2008) microRNA control of cell-cell signaling during development and disease. Cell Cycle 7, 2327-2332.   DOI
110 Ivey, K. N., Muth, A., Arnold, J., King, F. W., Yeh, R., Fish, J. E., Hsiao, E. C., Schwartz, R. J., Conklin, B. R., Bernstein, H. S. and Srivastava, D. (2008) MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2, 219-229.   DOI   ScienceOn