Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.12.816

Tobacco mitochondrial small heat shock protein NtHSP24.6 adopts a dimeric configuration and has a broad range of substrates  

Kim, Keun-Pill (School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University)
Yu, Ji-Hee (School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University)
Park, Soo-Min (School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University)
Koo, Hyun-Jo (School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University)
Hong, Choo-Bong (School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University)
Publication Information
BMB Reports / v.44, no.12, 2011 , pp. 816-820 More about this Journal
Abstract
There is a broad range of different small heat shock proteins (sHSPs) that have diverse structural and functional characteristics. To better understand the functional role of mitochondrial sHSP, NtHSP24.6 was expressed in Escherichia coli with a hexahistidine tag and purified. The protein was analyzed by non-denaturing PAGE, chemical cross-linking and size exclusion chromatography and the $H_6NtHSP24.6$ protein was found to form a dimer in solution. The in vitro functional analysis of $H_6NtHSP24.6$ using firefly luciferase and citrate synthase demonstrated that this protein displays typical molecular chaperone activity. When cell lysates of E. coli were heated after the addition of $H_6NtHSP24.6$, a broad range of proteins from 10 to 160 kD in size remained in the soluble state. These results suggest that NtHSP24.6 forms a dimer and can function as a molecular chaperone to protect a diverse range of proteins from thermal aggregation.
Keywords
Dimer; Mitochondrial sHSP; Molecular chaperone; NtHSP24.6; Substrate range;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Gechev, T. S., van Breusegem, F., Stone, J. M., Denev, I. and Laloi, C. (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioassays 28, 1091-1101.   DOI   ScienceOn
2 Giraud, E., Ho, L. H., Clifton, R., Carroll, A., Estavillo, G., Tan, Y. F., Howell, K. A., Ivanova, A., Pogson, B. J., Millar, A. H. and Whelan, J. (2008) The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol. 147, 595-610.   DOI   ScienceOn
3 Kim, R., Kim, K. K., Yokota, H. and Kim, S. H. (1998) Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc. Natl. Acad. Sci. U.S.A. 95, 9129-9133.   DOI
4 Stamler, R., Kappe, G., Boelens, W. and Slingsby, C. (2005) Wrapping the [alpha]-crystallin domain fold in a chaperone assembly. J. Mol. Biol. 353, 68-79.   DOI   ScienceOn
5 van Montfort, R. L. M., Basha, E., Friedrich, K. L., Slingsby, C. and Vierling, E. (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol. 8, 1025-1030.   DOI   ScienceOn
6 Joe, M. K., Park, S. M., Lee, Y. S., Hwang, D. S. and Hong, C. B. (2000) High temperature stress resistance of Escherichia coli induced by a tobacco class I low molecular weight heat-shock protein. Mol. Cells 10, 519-524.   DOI
7 Sambrook, J., Fristsch, E. F. and Maniatis, T. (1989) Molecular cloning; A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
8 Anderson, L. O., Borg, H. and Mikaelesson, M. (1972) Molecular weight estimations of proteins by electrophoresis in polyacrylamide gels of graded porosity. FEBS Lett. 20, 199-202.   DOI   ScienceOn
9 Chen, X., Wang, Y., Li, J., Jiang, A., Cheng, Y. and Zhang, W. (2009) Mitochondrial proteome during salt stress-induced programmed cell death in rice. Plant Physiol. Biochem. 47, 407-415.   DOI   ScienceOn
10 Chou, M., Chen, Y. M., Lin, Y. M. and Lin, C. Y. (1989) Thermotolerance of isolated mitochondria associated with heat shock proteins. Plant Physiol. 98, 167-621.
11 Downs, C. A. and Heckathorn, S. A. (1998) The mitochondrial small heat-shock protein protects NADH:ubiquinone oxidoreductase of the electron transport chain during heat stress in plants. FEBS Lett. 430, 246-250.   DOI   ScienceOn
12 Koo, H. J., Xia, X. and Hong, C. B. (2003) Genes and Expression pattern of tobacco mitochondrial small heat shock protein under high-temperature stress. J. Plant Biol. 46, 204-210.
13 Claros, M. G. and Vincens, P. (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur. J. Biochem. 241, 779-786.   DOI   ScienceOn
14 Bartoli, C. G., Gomez, F., Martinez, D. E. and Guiamet, J. J. (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J. Exp. Bot. 55, 1663-1669.   DOI   ScienceOn
15 Kim, K. P., Joe, M. K. and Hong, C. B. (2004) Tobacco small heat-shock protein, NtHSP18.2, has broad substrate range as a molecular chaperone. Plant Sci. 167, 1017-1025.   DOI   ScienceOn
16 Lenne, C., Block, M. A., Garin, J. and Douce, R. (1995) Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves. Biochem. J. 311, 805-813.   DOI
17 Eyles, S. and Gierasch, L. (2010) Nature's molecular sponges: Small heat shock proteins grow into their chaperone roles. Proc. Natl. Acad. Sci. U.S.A. 107, 2727-2728.   DOI   ScienceOn
18 MacRae, T. H. (2000) Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas. Cell. Mol. Life Sci. 57, 899-913.   DOI
19 Kriehuber, T., Rattei, T., Weinmaier, T., Bepperling, A., Haslbeck, M. and Buchner, J. (2010) Independent evolution of the core domain and its flanking sequences in small heat shock proteins. FASEB J. 24, 3633-3642.   DOI   ScienceOn
20 van Montfort, R. L. M., Slingsby, C. and Vierling, E. (2002) Structure and function of the small heat shock $protein/{\alpha}-crystallin$ family of molecular chaperones. Adv. Prot. Chem. 59, 105-156.
21 Rikhvanov, E. G., Gamburg, K. Z., Varakina, N. N., Rusaleva, T. M., Fedoseeva, I. V., Tauson, E. L., Stupnikova, I. V., Stepanov, A. V., Borovskii, G. B. and Voinikov, V. K. (2007) Nuclear-mitochondrial cross-talk during heat shock in Arabidopsis cell culture. Plant J. 52, 763-778.   DOI   ScienceOn
22 Nakamoto, H. and Vigh, L. (2007) The small heat shock proteins and their clients. Cell. Mol. Life Sci. 64, 294-306.   DOI
23 Basha, E., Lee, G. J., Breci, L. A., Hausrath, A. C., Buan, N. R., Giese, K. C. and Vierling, E. (2004) The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J. Biol. Chem. 279, 7566-7575.   DOI   ScienceOn
24 Maxwell, D. P., Nickels, R. and McIntosh, L. (2002) Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence. Plant J. 29, 269-279.   DOI   ScienceOn