Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.11.699

An electrochemical functional assay for the sensing of nitric oxide release induced by angiogenic factors  

Trouillon, Raphael (Department of Chemistry, University of Gotebor)
O'Hare, Danny (Department of Bioengineering, Imperial College London)
Chang, Soo-Ik (Department of Biochemistry, Chungbuk National University)
Publication Information
BMB Reports / v.44, no.11, 2011 , pp. 699-704 More about this Journal
Abstract
Nitric oxide (NO) is a critical biological mediator involved in numerous diseases. However, the short lifetime of this molecule in biological conditions can make its study in situ complicated. Here, we review some recent results on the role of NO in angiogenesis, obtained using a biocompatible microelectrode array. This simple system allowed for the quick and easy quantification of NO released from cells grown directly on the surface of the sensor. We have used this technology to demonstrate that angiogenin induces NO release, and to partially elucidate its intracellular transduction pathway.
Keywords
Angiogenin; Biosensing; Cells-on-a-chip; Functional assay; Nitric oxide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Miyazaki, T., Honda, K. and Ohata, H. (2007) Requirement of $Ca^{2+}$ influx-and phosphatidylinositol 3-kinase-mediated m-calpain activity for shear stress-induced endothelial cell polarity. Am. J. Physiol.-Cell Ph. 293, C1216-1225.   DOI   ScienceOn
2 Ibaragi, S., Yoshioka, N., Li, S., Hu, M., Hirukawa, S., Sadow, P. and Hu, G.-F. (2009) Neamine inhibits prostate cancer growth by suppressing angiogenin-mediated rRNA transcription. Clin. Cancer Res. 15, 1981-1988.   DOI   ScienceOn
3 Russo, N., Shapiro, R., Acharya, K., Riordan, J. and Vallee, B. (1994) Role of glutamine-117 in the ribonucleolytic activity of human angiogenin. Proc. Natl. Acad. Sci. U.S.A. 91, 2920-2924.   DOI   ScienceOn
4 Liu, S., Yu, D., Xu, Z., Riordan, J. and Hu, G.-F. (2001) Angiogenin activates ERK 1/2 in human umbilical vein endothelial cells. Biochem. Bioph. Res. Co. 287, 305-310.   DOI   ScienceOn
5 Kim, H.-M., Kang, D.-K., Kim, H.-Y., Kang, S.-S. and Chang, S.-I. (2007) Angiogenin-induced protein kinase b/Akt activation is necessary for angiogenesis but is independent of nuclear translocation of angiogenin in HUVE cells. Biochem. Bioph. Res. Co. 352, 509-513.   DOI   ScienceOn
6 Shapiro, R. and Vallee, B. (1987) Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proc. Natl. Acad. Sci. U.S.A. 84, 2238-2241.   DOI
7 Xu, Z., Monti, D. and Hu, G.-F. (2001) Angiogenin activates human umbilical artery smooth muscle cells. Biochem. Bioph. Res. Co. 285, 909-914.   DOI   ScienceOn
8 Hu, G., Xu, C. and Riordan, J. (2000) Human angiogenin is rapidly translocated to the nucleus of human umbilical vein endothelial cells and binds to DNA. J. Cell. Biochem. 76, 452-462.   DOI   ScienceOn
9 Chen, C. and Shapiro, R. (1997) Site-specific mutagenesis reveals differences in the structural bases for tight binding of RNase inhibitor to angiogenin and RNase A. Proc. Natl. Acad. Sci. U.S.A. 94, 1761-1766.   DOI
10 Li, R., Riordan, J. and Hu, G.-F.(1997) Nuclear translocation of human angiogenin in cultured human umbilical artery endothelial cells is microtubule and lysosome independent. Biochem. Bioph. Res. Co. 238, 305-312.   DOI   ScienceOn
11 Hu, G.-F. (1998) Neomycin inhibits angiogenin-induced angiogenesis. Proc. Natl. Acad. Sci. U.S.A. 95, 9791-9795.   DOI
12 Breslin, J., Pappas, P., Cerveira, J., Hobson, R. and Duran, W. (2003) VEGF increases endothelial permeability by separate signaling pathways involving ERK-1/2 and nitric oxide. Am. J. Physiol.-Heart C. 284, H92-100.   DOI
13 Fett, J., Strydom, D., Lobb, R., Alderman, E., Bethune, J., Riordan, J. and Vallee, B. (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24, 5480-5486.   DOI
14 Kishimoto, K., Liu, S., Tsuji, T., Olson, K. and Hu, G.-F. (2004) Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene 24, 445-456.
15 Cho, S., Moon, S., Lee, S., Kang, S., Kim, J., Lim, J., Kim, H., Kim, B. and Chung, H. (2007) Improvement of postnatal neovascularization by human embryonic stem cell-derived endothelial-like cell transplantation in a mouse model of hindlimb ischemia. Circulation 116, 2409-2419.   DOI   ScienceOn
16 Hirukawa, S., Olson, K., Tsuji, T. and Hu, G.-F. (2005) Neamine inhibits xenografic human tumor growth and angiogenesis in athymic mice. Clin. Cancer Res. 11, 8745-8752.   DOI   ScienceOn
17 Trouillon, R., Kang, D.-K., Park, H., Chang, S.-I. and O'Hare, D. (2010) Angiogenin induces nitric oxide synthesis in endothelial cells through PI-3 and Akt kinases. Biochemistry 49, 3282-3288.   DOI   ScienceOn
18 Shimoyama, S., Gansauge, F., Gansauge, S., Negri, G., Oohara, T. and Beger, H. (1996) Increased angiogenin expression in pancreatic cancer is related to cancer aggressiveness. Cancer Res. 56, 2703-2706.
19 Gao, X. and Xu, Z. (2008) Mechanisms of action of angiogenin. Acta. Biochim. Biophys. Sin. (Shanghai) 40, 619-624.   DOI   ScienceOn
20 Hu, G., Riordan, J. and Vallee, B. (1994) Angiogenin promotes invasiveness of cultured endothelial cells by stimulation of cell-associated proteolytic activities. Proc. Natl. Acad. Sci. U.S.A. 91, 12096-12100.   DOI
21 Patel, B., Arundell, M., Quek, R., Harvey, S., Ellis, I., Florence, M., Cass, A., Schor, A. and O'Hare, D. (2008) Individually addressable microelectrode array for monitoring oxygen and nitric oxide release. Anal. Bioanal. Chem. 390, 1379-1387.   DOI
22 Trouillon, R., Cheung, C., Patel, B. and O'Hare, D. (2009) Comparative study of poly (styrene-sulfonate)/poly (L-lysine) and fibronectin as biofouling preventing layers in dissolved oxygen electrochemical measurements. Analyst 134, 784-793.   DOI   ScienceOn
23 Shibuya, M. (2008) Vascular endothelial growth factor-dependent and-independent regulation of angiogenesis. BMB Rep. 41, 278-286.   과학기술학회마을   DOI   ScienceOn
24 Trouillon, R., Combs, Z., Patel, B. and O'Hare, D. (2009) Comparative study of the effect of various electrode membranes on biofouling and electrochemical measurements. Electrochem. Commun. 11, 1409-1413.   DOI   ScienceOn
25 Wisniewski, N. and Reichert, M. (2000) Methods for reducing biosensor membrane biofouling. Colloid. Surface. B 18, 197-219.   DOI   ScienceOn
26 Trouillon, R., Cheung, C., Patel, B. and O'Hare, D. (2010) Electrochemical study of the intracellular transduction of vascular endothelial growth factor induced nitric oxide synthase activity using a multi-channel biocompatible microelectrode array. BBA-Gen. Subjects 1800, 929-936.   DOI   ScienceOn
27 Dimmeler, S., Dernbach, E. and Zeiher, A. (2000) Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett. 477, 258-262.   DOI   ScienceOn
28 Chlench, S., Mecha Disassa, N., Hohberg, M., Hoffmann, C., Pohlkamp, T., Beyer, G., Bongrazio, M., Da Silva-Azevedo, L., Baum, O., Pries, A. R. and Zakrzewicz, A. (2007) Regulation of Foxo-1 and the angiopoietin-2/Tie2 system by shear stress. FEBS Lett. 581, 673-680.   DOI   ScienceOn
29 Amatore, C., Arbault, S., Jaouen, G., Koh, A., Leong, W., Top, S., Valleron, M. and Woo, C. (2010) Pro-oxidant properties of AZT and other thymidine analogues in macrophages: Implication of the azido moiety in oxidative stress. Chem. Med. Chem. 5, 296-301.   DOI   ScienceOn
30 Patel, B., Arundell, M., Parker, K., Yeoman, M. and O'Hare, D. (2006) Detection of nitric oxide release from single neurons in the pond snail, lymnaea stagnalis. Anal. Chem. 78, 7643-7648.   DOI   ScienceOn
31 Isik, S., Berdondini, L., Oni, J., Blochl, A., Koudelka-Hep, M. and Schuhmann, W. (2005) Cell-compatible array of three-dimensional tip electrodes for the detection of nitric oxide release. Biosens. Bioelectron. 20, 1566-1572.   DOI   ScienceOn
32 Patel, B., Arundell, M., Parker, K., Yeoman, M. and O'Hare, D. (2010) Microelectrode investigation of neuroneal ageing from a single identified neurone. Phys. Chem. Chem. Phys. 12, 10065-10072.   DOI   ScienceOn
33 Quinton, D., Girard, A., Kim, L., Raimbault, V., Griscom, L., Razan, F., Griveau, S. and Bedioui, F. (2011) On-chip multi-electrochemical sensor array platform for simultaneous screening of nitric oxide and peroxynitrite. Lab. Chip. 11, 1342-1350.   DOI   ScienceOn
34 Chang, S., Pereira-Rodrigues, N., Henderson, J., Cole, A., Bedioui, F. and McNeil, C. (2005) An electrochemical sensor array system for the direct, simultaneous in vitro monitoring of nitric oxide and superoxide production by cultured cells. Biosens. Bioelectron. 21, 917-922.   DOI   ScienceOn
35 Oni, J., Pailleret, A., Isik, S., Diab, N., Radtke, I., Blochl, A., Jackson, M., Bedioui, F. and Schuhmann, W. (2004) Functionalised electrode array for the detection of nitric oxide released by endothelial cells using different no-sensing chemistries. Anal. Bioanal. Chem. 378, 1594-1600.   DOI
36 Trouillon, R., Kang, D.-K., Chang, S.-I. and O'Hare, D. (2011) Angiogenin induces nitric oxide release independently from its RNase activity. Chem. Commun. 47, 3421-3426.   DOI   ScienceOn
37 Sessa, W., Pritchard, K., Seyedi, N., Wang, J. and Hintze, T. (1994) Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ. Res. 74, 349-353.   DOI   ScienceOn
38 Bredt, D. and Snyder, S. (1989) Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc. Natl. Acad. Sci. U.S.A. 86, 9030-9033.   DOI   ScienceOn
39 Itoh, Y., Ma, F., Hoshi, H., Oka, M., Noda, K., Ukai, Y., Kojima, H., Nagano, T. and Toda, N. (2000) Determination and bioimaging method for nitric oxide in biological specimens by diaminofluorescein fluorometry. Anal. Biochem. 287, 203-209.   DOI   ScienceOn
40 Bredt, D. and Snyder, S. (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. U.S.A. 87, 682-685.   DOI   ScienceOn
41 Bedioui, F. and Villeneuve, N. (2003) Electrochemical nitric oxide sensors for biological samples-principle, selected examples and applications. Electroanal. 15, 5-18.   DOI   ScienceOn
42 Bedioui, F., Quinton, D., Griveau, S. and Nyokong, T. (2010) Designing molecular materials and strategies for the electrochemical detection of nitric oxide, superoxide and peroxynitrite in biological systems. Phys. Chem. Chem. Phys. 12, 9976-9988.   DOI   ScienceOn
43 Arbault, S., Sojic, N., Bruce, D., Amatore, C., Sarasin, A. and Vuillaume, M. (2004) Oxidative stress in cancer prone xeroderma pigmentosum fibroblasts. Real-time and single cell monitoring of superoxide and nitric oxide production with microelectrodes. Carcinogenesis 25, 509-515.
44 Amatore, C., Arbault, S., Bouret, Y., Cauli, B., Guille, M., Rancillac, A. and Rossier, J. (2006) Nitric oxide release during evoked neuronal activity in cerebellum slices: Detection with platinized carbon-fiber microelectrodes. Chem. Phys. Chem. 7, 181-187.   DOI   ScienceOn
45 Palmer, R., Ferrige, A. and Moncada, S. (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524-526.   DOI   ScienceOn
46 Bogdan, C. (2001) Nitric oxide and the immune response. Nat. Immunol. 2, 907-916.   DOI   ScienceOn
47 Moilanen, E. and Vapaatalo, H. (1995) Nitric oxide in inflammation and immune response. Ann. Med. 27, 359-367.   DOI
48 Murohara, T., Asahara, T., Silver, M., Bauters, C., Masuda, H., Kalka, C., Kearney, M., Chen, D., Dymes, J. F., Fishman, M. C., Huang, P. L. and Isner, J. M. (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J. Clin. Invest. 101, 2567-2578.   DOI   ScienceOn
49 Bredt, D., Hwang, P. and Snyder, S. (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347, 768-770.   DOI   ScienceOn
50 Calabrese, V., Mancuso, C., Calvani, M., Rizzarelli, E., Butterfield, D. and Giuffrida Stella, A. (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 8, 766-775.   DOI   ScienceOn
51 Jenkins, D., Charles, I., Thomsen, L., Moss, D., Holmes, L., Baylis, S., Rhodes, P., Westmore, K., Emson, P. and Moncada, S. (1995) Roles of nitric oxide in tumor growth. Proc. Natl. Acad. Sci. U.S.A. 92, 4392-4396.   DOI   ScienceOn
52 Harris, A. (2002) Hypoxia-a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38-47.   DOI   ScienceOn
53 Rees, D., Palmer, R., Schulz, R., Hodson, H. and Moncada, S. (1990) Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Brit. J. Pharmacol. 101, 746-752.   DOI   ScienceOn
54 Gladwin, M., Crawford, J. and Patel, R. (2004) The biochemistry of nitric oxide, nitrite, and hemoglobin: role in blood flow regulation. Free Radical Bio. Med. 36, 707-717.   DOI   ScienceOn
55 Cooke, J. and Dzau, V. (1997) Nitric oxide synthase: role in the genesis of vascular disease. Annu. Rev. Med. 48, 489-510.   DOI   ScienceOn
56 Moncada, S., Palmer, R. and Higgs, E. (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 143, 109-141.