Temperature, organic solvent and pH stabilization of the neutral protease from Salinovibrio proteolyticus: significance of the structural calcium |
Asghari, S. Mohsen
(Department of Biology, Faculty of Science, University of Guilan)
Khajeh, Khosro (Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University) Dalfard, Arastoo Badoei (Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman) Pazhang, Mohammad (Department of Cellular and Molecular Biology, Faculty of Science, Azarbaijan University of Tarbiat Moallem) Karbalaei-Heidari, Hamid Reza (Department of Biology, College of Sciences, Shiraz University) |
1 | Badoei-Dalfard, A., Khajeh, K., Asghari, S. M., Ranjbar, B., and Karbalaei-Heidari, H. R. (2010) Enhanced activity and stability in the presence of organic solvents by increased active site polarity and stabilization of a surface loop in a metalloprotease. J. Biochem. 148, 231-238. DOI ScienceOn |
2 | Imanaka, T., Shibazaki, M., and Takagi, M. (1986) A new way of enhancing the thermostability of proteases. Nature 324, 695-697. DOI ScienceOn |
3 | Carrea, G., and Riva, S. (2000) Properties and synthetic applications of enzymes in organic solvents. Angew. Chem. Int. 39, 2226-2254. DOI ScienceOn |
4 | Fisher, C. L., and Pei, G. K. (1997) Modification of a PCR-based site-directed mutagenesis method. BioTechniques 23, 570-574. |
5 | Clapes, P., Torres-Luis, J., and Adlercreutz, P. (1995) Enzyme peptide synthesis in low water content systems: preparative enzymatic synthesis of (Leu)-and (Met)-enkephalin derivatives. Bioinorg. Ned. Chem. 3, 244-255. |
6 | Morihara, K. (1967) The specificity of various neutral and alkaline proteins from microorganisms. Biochem. Biophys. Res. Commun. 26, 657-661. |
7 | Eijsink, V. G. H., Veltman, O. R., Aukema, W., Vriend, G. and Venema, G. (1995) Structural determinants of the stability of thermolysin-like proteinases. Nat. Struct. Mol. Biol. 2, 374-379. DOI ScienceOn |
8 | Colmax, M., Jansonius, J. N., and Matthews, B. W. (1972) The structure of thermolysin: an electron density map at 2.3 Å resolution. J. Mol. Biol. 70, 701-724. DOI |
9 | Pauptit, R. A., Karlsson, .R, Picot, D., Jenkins, J. A., Nikolaus-Reimer, A. S., and Jansonius, J. N. (1988) Crystal structure of neutral protease from Bacillus cereus refined at 3.0 resolution and comparison with the homologous but more thermostable enzyme thermolysin. J. Mol. Biol. 199, 525-537. DOI |
10 | Thayer, P. M., Flaherty, K. M., and McKay, D. B. (1991) Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5- resolution. J. Biol. Chem. 266, 2864-2871. |
11 | Veltman, O. R., Vriend, G., Van den Burg, B., Hardy, F., Venema, G., and Eijsink, V. G. H. (1997) Engineering thermolysin-like proteases whose thermostability is largely independent of calcium. FEBS Lett. 405, 241-244. DOI ScienceOn |
12 | Asghari, S. M., Pazhang, M., Ehtesham, S., Karbalaei-Heidari, H. R., Taghdir, M., Sadeghizadeh, M., Naderi-Manesh, H. and Khajeh, K. (2010) Remarkable improvements of a neutral protease activity and stability share the same structural origins. Protein Eng. Des. Sel. 23, 599-606. DOI ScienceOn |