Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.9.584

Maintenance of cellular tetrahydrobiopterin homeostasis  

Kim, Hye-Lim (FIRST Research Group, School of Biological Sciences, Inje University)
Park, Young-Shik (FIRST Research Group, School of Biological Sciences, Inje University)
Publication Information
BMB Reports / v.43, no.9, 2010 , pp. 584-592 More about this Journal
Abstract
Tetrahydrobiopterin (BH4) is a multifunctional cofactor of aromatic amino acid hydroxylases and nitric oxide synthase (NOS) as well as an intracellular antioxidant in animals. Through regulation of NOS activity BH4 plays a pivotal role not only in a variety of normal cellular functions but also in the pathogenesis of cardiovascular and neurodegenerative diseases, which develop under oxidative stress conditions. It appears that a balanced interplay between BH4 and NOS is crucial for cellular fate. If cellular BH4 homeostasis maintained by BH4 synthesis and regeneration fails to cope with increased oxidative stress, NOS is uncoupled to generate superoxide rather than NO and, in turn, exacerbates impaired BH4 homeostasis, thereby leading to cell death. The fundamental biochemical events involved in the BH4-NOS interplay are essentially the same, as revealed in mammalian endothelial, cardiac, and neuronal cells. This review summarizes information on the cellular BH4 homeostasis in mammals, focusing on its regulation under normal and oxidative stress conditions.
Keywords
Biosynthesis; Endothelial dysfunction; Neurodegenerative diseases; Nitric oxide synthase; Regeneration; Tetrahydrobiopterin;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 6
연도 인용수 순위
1 Shimizu, S., Ishii, M., Miyasaka, Y., Wajima, T., Negoro, T., Hagiwara, T. and Kiuchi, Y. (2005) Possible involvement of hydroxyl radical on the stimulation of tetrahydrobiopterin synthesis by hydrogen peroxide and peroxynitrite in vascular endothelial cells. Int. J. Biochem. Cell Biol. 37, 864-875.   DOI   ScienceOn
2 Brewer, G. J. (2007) Iron and copper toxicity in diseases of aging, particularly atherosclerosis and Alzheimer's disease. Exp. Biol. Med. 232, 323-335.
3 Shimizu, S., Shiota, K., Yamamoto, S., Miyasaka, Y., Ishii, M., Watabe, T., Nishida, M., Mori, Y., Yamamoto, T. and Kiuchi, Y. (2003) Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through the induction of GTP-cyclohydrolase I and increases nitric oxide synthase activity in vascular endothelial cells. Free Radic. Biol. Med. 34, 1343-1352.   DOI   ScienceOn
4 Shimizu, S., Hiroi, T., Ishii, M., Hagiwara, T., Wajima, T., Miyazaki, A. and Kiuchi, Y. (2008) Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through activation of the Jak2 tyrosine kinase pathway in vascular endothelial cells. Int. J. Biochem. Cell Biol. 40, 755-765.   DOI   ScienceOn
5 Chen, W., Druhan, L. J., Chen, C. A., Hemann, C., Chen, Y. R., Berka, V., Tsai, A. L. and Zweier, J. L. (2010) Peroxynitrite induces destruction of the tetrahydrobiopterin and heme in endothelial nitric oxide synthase: transition from reversible to irreversible enzyme inhibition. Biochemistry 49, 3129-3137.   DOI   ScienceOn
6 Davis, M. D., Kaufman, S. and Milstien, S. (1988) The auto- oxidation of tetrahydrobiopterin. Eur. J. Biochem. 173, 345-351.   DOI   ScienceOn
7 Laursen, J. B., Somers, M., Kurz, S., McCann, L., Warnholtz, A., Freeman, B. A., Tarpey, M., Fukai, T. and Harrison, D. G. (2001) Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 103, 1282-1288.   DOI   ScienceOn
8 Vasquez-Vivar, J., Kalyanaraman, B., Martasek, P., Hogg, N., Masters, B. S., Karoui, H., Tordo, P. and Pritchard, K. A. Jr. (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc. Natl. Acad. Sci. U.S.A. 95, 9220-9225.   DOI   ScienceOn
9 Crabtree, M. J., Smith, C. L., Lam, G., Goligorsky, M. S. and Gross, S. S. (2008) Ratio of 5,6,7,8-tetrahydrobiopterin to 7,8-dihydrobiopterin in endothelial cells determines glucose-elicited changes in NO vs. superoxide production by eNOS. Am. J. Physiol. Heart Circ. Physiol. 294, 1530-1540.   DOI   ScienceOn
10 Vasquez-Vivar, J., Whitsett, J., Martasek, P., Hogg, N. and Kalyanaraman, B. (2001) Reaction of tetrahydrobiopterin with superoxide: EPR-kinetic analysis and characterization of the pteridine radical. Free Radic. Biol. Med. 31, 975-985.   DOI   ScienceOn
11 Sun, J., Druhan, L. J. and Zweier, J. L. (2008) Dose dependent effects of reactive oxygen and nitrogen species on the function of neuronal nitric oxide synthase. Arch. Biochem. Biophys. 471, 126-133.   DOI   ScienceOn
12 Sun, J., Druhan, L. J. and Zweier, J. L. (2010) Reactive oxygen and nitrogen species regulate inducible nitric oxide synthase function shifting the balance of nitric oxide and superoxide production. Arch. Biochem. Biophys. 494, 130-137.   DOI   ScienceOn
13 Grobe, A. C., Wells, S. M., Benavidez, E., Oishi, P., Azakie, A., Fineman, J. R. and Black, S. M. (2006) Increased oxidative stress in lambs with increased pulmonary blood flow and pulmonary hypertension: role of NADPH oxidase and endothelial NO synthase. Am. J. Physiol. Lung Cell Mol. Physiol. 290, 1069-1077.   DOI   ScienceOn
14 Chrissobolis, S. and Faraci, F. M. (2008) Trends in molecular medicine. The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol. Med. 14, 495-502.   DOI   ScienceOn
15 Katoh, S. and Sueoka, T. (1984) Sepiapterin reductase exhibits a NADPH-dependent dicarbonyl reductase activity. Biochem. Biophys. Res. Commun. 118, 859-866.   DOI   ScienceOn
16 Padmaja, S. and Huie, R. E. (1993) The reaction of nitric oxide with organic peroxyl radicals. Biochem. Biophys. Res. Commun. 195, 539-544.   DOI   ScienceOn
17 Franscini, N., Blau, N., Walter, R. B., Schaffner, A. and Schoedon, G. (2003) Critical role of interleukin-1beta for transcriptional regulation of endothelial 6-pyruvoyltetrahydropterin synthase. Arterioscler. Thromb. Vasc. Biol. 23, 50-53.   DOI   ScienceOn
18 Niederwieser, A., Shintaku, H., Hasler, T., Curtius, H. C., Lehmann, H., Guardamagna, O. and Schmidt, H. (1986) Prenatal diagnosis of "dihydrobiopterin synthetase" deficiency, a variant form of phenylketonuria. Eur. J. Pediatr. 145, 176-178.   DOI
19 Ponzone, A., Spada, M., Ferraris, S., Dianzani, I. and de Sanctis, L. (2004) Dihydropteridine reductase deficiency in man: from biology to treatment. Med. Res. Rev. 24, 127-150.   DOI   ScienceOn
20 Wei, C. C., Wang, Z. Q., Tejero, J., Yang, Y. P., Hemann, C., Hille, R. and Stuehr, D. J. (2008) Catalytic reduction of a tetrahydrobiopterin radical within nitric-oxide synthase. J. Biol. Chem. 25, 11734-11742.
21 Woodward, J. J., Nejatyjahromy, Y., Britt, R. D. and Marletta, M. A. (2010) Pterin-centered radical as a mechanistic probe of the second step of nitric oxide synthase. J. Am. Chem. Soc. 14, 5105-5113.
22 Milstien, S. and Katusic, Z. (1999) Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem. Biophys. Res. Commun. 263, 681-684.   DOI   ScienceOn
23 Moens, A. L. and Kass, D. A. (2007) Therapeutic potential of tetrahydrobiopterin for treating vascular and cardiac disease. J. Cardiovasc. Pharmacol. 50, 238-246.   DOI   ScienceOn
24 Rafferty, S. P., Boyington, J. C., Kulansky, R., Sun, P. D. and Malech, H. L. (1999) Stoichiometric arginine binding in the oxygenase domain of inducible nitric oxide synthase requires a single molecule of tetrahydrobiopterin per dimer. Biochem. Biophys. Res. Commun. 257, 344-347.   DOI   ScienceOn
25 Wever, R. M., Luscher, T. F., Cosentino, F. and Rabelink, T. J. (1998) Atherosclerosis and the two faces of endothelial nitric oxide synthase. Circulation 97, 108-112.   DOI   ScienceOn
26 Shi, W., Meininger, C. J., Haynes, T. E., Hatakeyama, K. and Wu, G. (2004) Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells. Cell Biochem. Biophys. 41, 415-434.   DOI   ScienceOn
27 Kalivendi, S., Hatakeyama, K., Whitsett, J., Konorev, E., Kalyanaraman, B. and Vasquez-Vivar, J. (2005) Changes in tetrahydrobiopterin levels in endothelial cells and adult cardiomyocytes induced by LPS and hydrogen peroxide?A role for GFRP? Free Radic. Biol. Med. 38, 481-491.   DOI   ScienceOn
28 Werner, E. R., Bahrami, S., Heller, R. and Werner-Felmayer, G. (2002) Bacterial lipopolysaccharide down-regulates expression of GTP cyclohydrolase I feedback regulatory protein. J. Biol. Chem. 227, 10129-10133.
29 Xie, L., Smith, J. A. and Gross, S. S. (1998) GTP cyclohydrolase I inhibition by the prototypic inhibitor 2,4-diamino-6-hydroxypyrimidine. Mechanisms and unanticipated role of GTP cyclohydrolase I feedback regulatory protein. J. Biol. Chem. 273, 21091-21098.   DOI   ScienceOn
30 Ionova, I. A., Vasquez-Vivar, J., Whitsett, J., Herrnreiter, A., Medhora, M., Cooley, B. C. and Pieper, G. M. (2008) Deficient BH4 production via de novo and salvage pathways regulates NO responses to cytokines in adult cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 295, 2178-2187.   DOI   ScienceOn
31 Tatham, A. L., Crabtree, M. J., Warrick, N., Cai, S., Alp, N. J. and Channon, K. M. (2009) GTP cyclohydrolase I expression, protein and activity determine intracellular tetrahydrobiopterin levels, independent of GTP cyclohydrolase feedback regulatory protein expression. J. Biol. Chem. 284, 13660-13668.   DOI   ScienceOn
32 Linscheid, P., Schaffner, A., Blau, N. and Schoedon, G. (1998) Regulation of 6-pyruvoyltetrahydropterin synthase activity and messenger RNA abundance in human vascular endothelial cells. Circulation 98, 1703-1706.   DOI   ScienceOn
33 Du, J., Wei, N., Xu, H., Ge, Y., Vasquez-Vivar, J., Guan, T., Oldham, K. T., Pritchard, K. A. Jr. and Shi, Y. (2009) Identification and functional characterization of phosphorylation sites on GTP cyclohydrolase I. Arterioscler Thromb. Vasc. Biol. 29, 2161-2168.   DOI   ScienceOn
34 Elzaouk, L., Laufs, S., Heerklotz, D., Leimbacher, W., Blau, N., Resibois, A. and Thony, B. (2004) Nuclear localization of tetrahydrobiopterin biosynthetic enzymes. Biochim. Biophys. Acta. 1670, 56-68.   DOI   ScienceOn
35 Chavan, B., Gillbro, J. M., Rokos, H. and Schallreuter, K. U. (2006) GTP cyclohydrolase feedback regulatory protein controls cofactor 6-tetrahydrobiopterin synthesis in the cytosol and in the nucleus of epidermal keratinocytes and melanocytes. J. Invest. Dermatol. 126, 2481-2489.   DOI   ScienceOn
36 Xu, J., Wu, Y., Song, P., Zhang, M., Wang, S. and Zou, M. H. (2007) Proteasome-dependent degradation of guanosine 5'-triphosphate cyclohydrolase I causes tetrahydrobiopterin deficiency in diabetes mellitus. Circulation 116, 944-953.   DOI   ScienceOn
37 Goligorsky, M. S., Li, H., Brodsky, S. and Chen, J. (2002) Relationships between caveolae and eNOS: everything in proximity and the proximity of everything. Am. J. Physiol. Renal. Physiol. 283, 1-10.   DOI
38 Wang, S., Xu, J., Song, P., Viollet, B. and Zou, M. H. (2009) In vivo activation of AMP-activated protein kinase attenuates diabetes-enhanced degradation of GTP cyclohydrolase I. Diabetes 58, 1893-1901.   DOI   ScienceOn
39 Chiarini, A., Armato, U., Pacchiana, R. and Dal Pra, I. (2009) Proteomic analysis of GTP cyclohydrolase 1 multiprotein complexes in cultured normal adult human astrocytes under both basal and cytokine-activated conditions. Proteomics 9, 1850-1860.   DOI   ScienceOn
40 Peterson, T. E, d'Uscio, L. V., Cao, S., Wang, X. L. and Katusic, Z. S. (2009) Guanosine triphosphate cyclohydrolase I expression and enzymatic activity are present in caveolae of endothelial cells. Hypertension 53, 189-195.   DOI   ScienceOn
41 Widder, J. D., Chen, W., Li, L., Dikalov, S., Thony, B., Hatakeyama, K. and Harrison, D. G. (2007) Regulation of tetrahydrobiopterin biosynthesis by shear stress. Circ. Res. 101, 830-838.   DOI   ScienceOn
42 Duncan, J. S. and Litchfield, D. W. (2008) Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochimica et Biophysica Acta. 1784, 33-47.   DOI   ScienceOn
43 Li, L., Rezvan, A., Salerno, J. C., Husain, A., Kwon, K., Jo, H., Harrison, D. G. and Chen, W. (2010) GTP cyclohydrolase I phosphorylation and interaction with GTP cyclohydrolase feedback regulatory protein provide novel regulation of endothelial tetrahydrobiopterin and nitric oxide. Circ. Res. 106, 328-336.   DOI   ScienceOn
44 Gilchrist, M., Hesslinger, C. and Befus, A. D. (2003) Tetrahydrobiopterin, a critical factor in the production and role of nitric oxide in mast cells. J. Biol. Chem. 278, 50607-50614.   DOI   ScienceOn
45 Kanaya, S., Ikeda, H., Haramaki, N., Murohara, T. and Imaizumi, T. (2001) Intraplatelet tetrahydrobiopterin plays an important role in regulating canine coronary arterial thrombosis by modulating intraplatelet nitric oxide and superoxide generation. Circulation 104, 2478-2484.   DOI   ScienceOn
46 Lapize, C., Pluss, C., Werner, E. R., Huwiler, A. and Pfeilschifter, J. (1998) Protein kinase C phosphorylates and activates GTP cyclohydrolase I in rat renal mesangial cells. Biochem. Biophys. Res. Commun. 251, 802-805.   DOI   ScienceOn
47 Hesslinger, C., Kremmer, E., Hultner, L., Ueffing, M. and Ziegler, I. (1998) Phosphorylation of GTP cyclohydrolase I and modulation of Its activity in rodent mast cells. GTP cyclohydrolase I hyperphosphorylation is coupled to high affinity IgE receptor signaling and involves protein kinase C. J. Biol. Chem. 273, 21616-21622.   DOI   ScienceOn
48 Zorzi, G., Redweik, U., Trippe, H., Penzien, J. M., Thony, B. and Blau, N. (2002) Detection of sepiapterin in CSF of patients with sepiapterin reductase deficiency. Mol. Genet. Metab. 75, 174-177.   DOI   ScienceOn
49 Yang, S., Lee, Y. J., Kim, J. M., Park, S., Peris, J., Laipis, P., Park, Y. S., Chung, J. H. and Oh, S. P. (2006) A murine model for human sepiapterin-reductase deficiency. Am. J. Hum. Genet. 78, 575-587.   DOI   ScienceOn
50 Craine, J. E., Hall, E. S. and Kaufman, S. (1972) The isolation and characterization of dihydropteridine reductase from sheep liver. J. Biol. Chem. 247, 6082-6091.
51 Hevel, J. M., Stewart, J. A., Gross, K. L. and Ayling, J. E. (2006) Can the DCoHalpha isozyme compensate in patients with4a-hydroxy-tetrahydrobiopterin dehydratase/DCoH deficiency? Mol. Genet. Metab. 88, 38-46.   DOI   ScienceOn
52 Milstien, S., Jaffe, H., Kowlessur, D. and Bonner, T. I. (1996) Purification and cloning of the GTP cyclohydrolase I feedback regulatory protein, GFRP. J. Biol. Chem. 271, 19743-19751.   DOI   ScienceOn
53 Harada, T., Kagamiyama, H. and Hatakeyama, K. (1993) Feedback Regulation Mechanisms for the control of GTP Cyclohydrolase I Activity. Science 260, 1507-1510.   DOI
54 Yoneyama, T. and Hatakeyama, K. (1998) Decameric GTP cyclohydrolase I forms complexes with two pentameric GTP cyclohydrolase I feedback regulatory proteins in the presence of phenylalanine or of a combination of tetrahydrobiopterin and GTP. J. Biol. Chem. 273, 20102-20108.   DOI   ScienceOn
55 Maita, N., Okada, K, Hatakeyama, K. and Hakoshima, T. (2002) Crystal structure of the stimulatory complex of GTP cyclohydrolase I and its feedback regulatory protein GFRP. Proc. Natl. Acad. Sci. U.S.A. 99, 1212-1217.   DOI   ScienceOn
56 Gesierich, A., Niroomand, F. and Tiefenbacher, C. P. (2003) Role of human GTP cyclohydrolase I and its regulatory protein in tetrahydrobiopterin metabolism. Basic Res. Cardiol. 98, 69-75.   DOI
57 Shang, T., Kotamraju, S., Kalivendi, S. V., Hillard, C. J. and Kalyanaraman, B. (2004) 1-Methyl-4-phenylpyridinium-induced apoptosis in cerebellar granule neurons is mediated by transferrin receptor iron-dependent depletion of tetrahydrobiopterin and neuronal nitric-oxide synthasederived superoxide. J. Biol. Chem. 279, 19099-19112.   DOI   ScienceOn
58 Shang, T., Kotamraju, S., Zhao, H., Kalivendi, S. V., Hillard, C. J. and Kalyanaraman, B. (2005) Sepiapterin attenuates 1-methyl-4-phenylpyridinium-induced apoptosis in neuroblastoma cells transfected with neuronal NOS: role of tetrahydrobiopterin, nitric oxide and proteasome activation. Free Radic. Biol. Med. 15, 1059-1074.
59 Milstien, S. and Kaufman, S. (1989) The biosynthesis of tetrahydrobiopterin in rat brain. Purification and characterization of 6-pyruvoyl tetrahydropterin (2'-oxo) reductase. J. Biol. Chem. 264, 8066-8073.
60 Auerbach, G., Herrmann, A., Gutlich, M., Fischer, M., Jacob, U., Bacher, A. and Huber, R. (1997) The 1.25 ${\AA}$ crystal structure of sepiapterin reductase reveals its binding mode to pterins and brain neurotransmitters. EMBO J. 16, 7219-7230.   DOI   ScienceOn
61 Park, Y. S., Heizmann, C. W., Wermuth, B., Levine, R. A., Steinerstauch, P., Guzman, J. and Blau, N. (1991) Human carbonyl and aldose reductase: new catalytic functions in tetrahydrobiopterin biosynthesis. Biochem. Biophys. Res. Commun. 175, 738-744.   DOI   ScienceOn
62 Hirakawa, H., Sawada, H., Yamahama, Y., Takikawa, S., Shintaku, H., Hara, A., Mase, K., Kondo, T. and Iino, T. (2009) Expression analysis of the aldo-keto reductases involved in the novel biosynthetic pathway of tetrahydrobiopterin in human and mouse tissues. J. Biochem. 146, 51-60.   DOI   ScienceOn
63 Bonafe, L., Thony, B., Penzien, J. M., Czarnecki, B. and Blau, N. (2001) Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Am. J. Hum. Genet. 69, 269-277.   DOI   ScienceOn
64 Schnetz-Boutaud, N. C., Anderson, B. M., Brown, K. D., Wright, H. H., Abramson, R. K., Cuccaro, M. L., Gilbert, J. R., Pericak-Vance, M. A. and Haines, J. L. (2009) Examination of tetrahydrobiopterin pathway genes in autism. Genes. Brain and Behavior 8, 753-757.   DOI   ScienceOn
65 Richardson, M. A., Read, L. L., Reilly, M. A., Clelland, J. D. and Clelland, C. L. (2006) Analysis of plasma biopterin levels in psychiatric disorders suggests a common BH4 deficit in schizophrenia and schizoaffective disorder. Neurochem. Res. 32, 107-113.   DOI
66 Leeming, R. J., Hall, S. K., Surplice, I. M. and Green A. (1990) Relationship between plasma and red cell biopterins in acute and chronic hyperphenylalaninaemia. J. Inherit. Metab. Dis. 13, 883-887.   DOI
67 Foxton, R. H., Land, J. M. and Heales, S. J. (2007) Tetrahydrobiopterin availability in Parkinson's and Alzheimer's disease; potential pathogenic mechanisms. Neurochem. Res. 32, 751-756.   DOI
68 Vasquez-Vivar, J. (2009) Tetrahydrobiopterin, superoxide and vascular dysfunction. Free Radic. Biol. Med. 15, 1108-1119.
69 Fleming, I. (2010) Molecular mechanisms underlying the activation of eNOS. Pflugers Arch. 459, 793-806.   DOI
70 Hoshiga, M., Hatakeyama, K., Watanabe, M., Shimada, M. and Kagamiyama, H. (1993) Autoradiographic distribution of [14C] tetrahydrobiopterin and its developmental change in mice. J. Pharmacol. Exp. Ther. 267, 971-978.
71 Katusic, Z. S. (2001) Vascular endothelial dysfunction: does tetrahydrobiopterin play a role? Am. J. Physiol. Heart Circ. Physiol. 281, 981-986.   DOI
72 Silberman, G. A., Fan, T. H., Liu, H., Jiao, Z., Xiao, H. D., Lovelock, J. D., Boulden, B. M., Widder, J., Fredd, S., Bernstein, K. E., Wolska, B. M., Dikalov, S., Harrison, D. G. and Dudley, S. C. Jr. (2010) Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation 121, 519-528.   DOI   ScienceOn
73 Cha, E. Y., Park, J. S., Jeon, S., Kong, J. S., Choi, Y. K., Ryu, J. Y., Park, Y. I. and Park, Y. S. (2005) Functional Characterization of the gene encoding UDP-glucose: tetrahydrobiopterin ${\alpha}$-glucosyltransferase in Synechococcus sp. PCC 7942. J. Microbiol. 43, 191-195.   과학기술학회마을
74 Thony, B., Auerbach, G. and Blau, N. (2000) Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem. J. 347, 1-16.   DOI   ScienceOn
75 Kim, H. L., Choi, Y. K., Kim, D. H., Park, S. O., Han, J. and Park, Y. S. (2007) Tetrahydropteridine deficiency impairs mitochondrial function in Dictyostelium discoideum Ax2. FEBS Letters 581, 5430-5434.   DOI   ScienceOn
76 Longo, N. (2009) Disorders of biopterin metabolism. J. Inherit. Metab. Dis. 32, 333-342.   DOI
77 Tegeder, I., Costigan, M., Griffin, R. S., Abele, A., Belfer, I., Schmidt, H., Ehnert, C., Nejim, J., Marian, C., Scholz, J., Wu, T., Allchorne, A., Diatchenko, L., Binshtok, A. M., Goldman, D., Adolph, J., Sama, S., Atlas, S. J., Carlezon, W. A., Parsegian, A., Lotsch, J., Fillingim, R. B., Maixner, W., Geisslinger, G., Max, M. B. and Woolf, C. J. (2006) GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nat. Med. 12, 1269-1277.   DOI   ScienceOn
78 Shang, T., Kotamraju, S., Zhao, H., Kalivendi, S. V., Hillard, C. J. and Kalyanaraman, B. (2005) Sepiapterin attenuates 1-methyl-4-phenylpyridinium-induced apoptosis in neuroblastoma cells transfected with neuronal NOS: role of tetrahydrobiopterin, nitric oxide and proteasome activation. Free Radic. Biol. Med. 39, 1059-1074.   DOI   ScienceOn
79 Khoo, J. P., Zhao, L., Alp, N. J., Bendall, J. K., Nicoli, T., Rockett, K., Wilkins, M. R. and Channon, K. M. (2005) Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension. Circulation 111, 2126-2133.   DOI   ScienceOn
80 Nandi, M., Miller, A., Stidwill, R., Jacques, T. S., Lam, A. A., Haworth, S., Heales, S. and Vallance, P. (2005) Pulmonary hypertension in a GTP-cyclohydrolase 1-deficient mouse. Circulation 111, 2086-2090.   DOI   ScienceOn
81 Cardaci, S., Filomeni, G., Rotilio, G. and Ciriolo, M. R. (2010) p38MAPK/p53 signaling axis mediates neuronal apoptosis in response to tetrahydrobiopterin-induced oxidative stress and glucose uptake inhibition: implication for neurodegeneration. Biochem. J. Published online [PMID: 20590525].
82 Casadei, B. (2006) The emerging role of neuronal nitric oxide synthase in the regulation of myocardial function. Exp. Physiol. 91, 943-955.   DOI   ScienceOn
83 Lee, C. K., Han, J. S., Won, K. J., Jung, S. H., Park, H. J., Lee, H. M., Kim, J., Park, Y. S., Kim, H. J., Park, P. J., Park, T. K. and Kim, B. (2009) Diminished expression of dihydropteridine reductase is a potent biomarker for hypertensive vessels. Proteomics 9, 4851-4858.   DOI   ScienceOn
84 Forstermann, U. (2006) Janus-faced role of endothelial NO synthase in vascular disease: uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal. Biol. Chem. 387, 1521-1533.   DOI
85 Chalupsky, K. and Cai, H. (2005) Endothelial dihydrofolate reductase: critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. U.S.A. 102, 9056-9061.   DOI   ScienceOn
86 Crabtree, M. J., Tatham, A. L., Hale, A. B., Alp, N. J. and Channon, K. M. (2009) Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways. J. Biol. Chem. 284, 28128-28136.   DOI   ScienceOn
87 Hasse, S., Gibbons, N. C., Rokos, H., Marles, L. K and Schallreuter, K. U. (2004) Perturbed 6-tetrahydrobiopterin recycling via decreased dihydropteridine reductase in vitiligo: more evidence for $H_2O_2$ stress. J. Invest. Dermatol. 122, 307-313.   DOI   ScienceOn
88 Shinozaki, K., Hirayama, A., Nishio, Y., Yoshida, Y., Ohtani, T., Okamura, T., Masada, M., Kikkawa, R., Kodama, K. and Kashiwagi, A. (2001) Coronary endothelial dysfunction in the insulin-resistant state is linked to abnormal pteridine metabolism and vascular oxidative stress. J. Am. Coll. Cardiol. 38, 1821-1828.   DOI   ScienceOn
89 Waring, P. (1986) The time-dependent inactivation of human brain dihydropteridine reductase by the oxidation products of L-dopa. Eur. J. Biochem. 3, 305-310.   DOI   ScienceOn