Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.6.389

Fertilization and the oocyte-to-embryo transition in C. elegans  

Marcello, Matthew R. (Waksman Institute and Department of Genetics Rutgers University)
Singson, Andrew (Waksman Institute and Department of Genetics Rutgers University)
Publication Information
BMB Reports / v.43, no.6, 2010 , pp. 389-399 More about this Journal
Abstract
Fertilization is a complex process comprised of numerous steps. During fertilization, two highly specialized and differentiated cells (sperm and egg) fuse and subsequently trigger the development of an embryo from a quiescent, arrested oocyte. Molecular interactions between the sperm and egg are necessary for regulating the developmental potential of an oocyte, and precise coordination and regulation of gene expression and protein function are critical for proper embryonic development. The nematode Caenorhabditis elegans has emerged as a valuable model system for identifying genes involved in fertilization and the oocyte-to-embryo transition as well as for understanding the molecular mechanisms that govern these processes. In this review, we will address current knowledge of the molecular underpinnings of gamete interactions during fertilization and the oocyte-to-embryo transition in C. elegans. We will also compare our knowledge of these processes in C. elegans to what is known about similar processes in mammalian, specifically mouse, model systems.
Keywords
C. elegans; Egg activation; Fertilization; Oocyte-to-embryo transition; Sperm-egg fusion;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Ikawa, M., Inoue, N., Benham, A. M. and Okabe, M. (2010) Fertilization: a sperm's journey to and interaction with the oocyte. J. Clin. Invest. 120, 984-994.   DOI   ScienceOn
2 Ward, S. and Carrel, J. S. (1979) Fertilization and sperm competition in the nematode Caenorhabditis elegans. Dev. Biol. 73, 304-321.   DOI   ScienceOn
3 Singson, A. (2001) Every sperm is sacred: fertilization in Caenorhabditis elegans. Dev. Biol. 230, 101-109.   DOI   ScienceOn
4 Bembenek, J. N., Richie, C. T., Squirrell, J. M., Campbell, J. M., Eliceiri, K. W., Poteryaev, D., Spang, A., Golden, A. and White, J. G. (2007) Cortical granule exocytosis in C. elegans is regulated by cell cycle components including separase. Development 134, 3837-3848.   DOI   ScienceOn
5 Stitzel, M. L. and Seydoux, G. (2007) Regulation of the oocyte-to-zygote transition. Science 316, 407-408.   DOI   ScienceOn
6 de Kretser, D. M. (1997) Male infertility. Lancet 349, 787-790.   DOI   ScienceOn
7 O'Flynn O'Brien, K. L., Varghese, A. C. and Agarwal, A. (2010) The genetic causes of male factor infertility: a review. Fertil Steril 93, 1-12.   DOI   ScienceOn
8 Manetti, G. J. and Honig, S. C. (2010) Update on male hormonal contraception: is the vasectomy in jeopardy? Int. J. Impot. Res. 22, 159-170.   DOI   ScienceOn
9 Laprise, S. L. (2009) Implications of epigenetics and genomic imprinting in assisted reproductive technologies. Mol. Reprod. Dev. 76, 1006-1018.   DOI   ScienceOn
10 Grace, K. S. and Sinclair, K. D. (2009) Assisted reproductive technology, epigenetics, and long-term health: a developmental time bomb still ticking. Semin. Reprod. Med. 27, 409-416.   DOI   ScienceOn
11 Florman, H. M. and Ducibella, T. (2006) Fertilization in Mammals; in Knobil and Neill's Physiology of Reproduction. Neill, J. D. (ed.), Elsevier, San Diego, USA.
12 Singson, A., Hang, J. S. and Parry, J. M. (2008) Genes required for the common miracle of fertilization in Caenorhabditis elegans. Int. J. Dev. Biol. 52, 647-656.   DOI   ScienceOn
13 Wortzman-Show, G. B., Kurokawa, M., Fissore, R. A. and Evans, J. P. (2007) Calcium and sperm components in the establishment of the membrane block to polyspermy: studies of ICSI and activation with sperm factor. Mol. Hum. Reprod. 13, 557-565.   DOI   ScienceOn
14 Sato, M., Grant, B. D., Harada, A. and Sato, K. (2008) Rab11 is required for synchronous secretion of chondroitin proteoglycans after fertilization in Caenorhabditis elegans. J. Cell Sci. 121, 3177-3186.   DOI   ScienceOn
15 Gardner, A. J., Williams, C. J. and Evans, J. P. (2007) Establishment of the mammalian membrane block to polyspermy: evidence for calcium-dependent and -independent regulation. Reproduction 133, 383-393.   DOI   ScienceOn
16 Gardner, A. J., Knott, J. G., Jones, K. T. and Evans, J. P. (2007) CaMKII can participate in but is not sufficient for the establishment of the membrane block to polyspermy in mouse eggs. J. Cell Physiol. 212, 275-280.   DOI   ScienceOn
17 Gardner, A. J. and Evans, J. P. (2006) Mammalian membrane block to polyspermy: new insights into how mammalian eggs prevent fertilisation by multiple sperm. Reprod. Fertil. Dev. 18, 53-61.   DOI   ScienceOn
18 Ducibella, T. and Fissore, R. (2008) The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development. Dev. Biol. 315, 257-279.   DOI   ScienceOn
19 Saunders, C. M., Larman, M. G., Parrington, J., Cox, L. J., Royse, J., Blayney, L. M., Swann, K. and Lai, F. A. (2002) PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development 129, 3533-3544.
20 Swann, K., Saunders, C. M., Rogers, N. T. and Lai, F. A. (2006) PLCzeta (zeta): a sperm protein that triggers Ca2+ oscillations and egg activation in mammals. Semin. Cell Dev. Biol. 17, 264-273.   DOI   ScienceOn
21 Liu, J. and Maller, J. L. (2005) Calcium elevation at fertilization coordinates phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to release metaphase arrest by cytostatic factor. Curr. Biol. 15, 1458-1468.   DOI   ScienceOn
22 Rauh, N. R., Schmidt, A., Bormann, J., Nigg, E. A. and Mayer, T. U. (2005) Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 437, 1048-1052.   DOI   ScienceOn
23 Hansen, D. V., Tung, J. J. and Jackson, P. K. (2006) CaMKII and polo-like kinase 1 sequentially phosphorylate the cytostatic factor Emi2/XErp1 to trigger its destruction and meiotic exit. Proc. Natl. Acad. Sci. U.S.A. 103, 608-613.   DOI   ScienceOn
24 Zhang, Y., Foster, J. M., Nelson, L. S., Ma, D. and Carlow, C. K. (2005) The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Dev. Biol. 285, 330-339.   DOI   ScienceOn
25 Wessel, G. M., Brooks, J. M., Green, E., Haley, S., Voronina, E., Wong, J., Zaydfudim, V. and Conner, S. (2001) The biology of cortical granules. Int. Rev. Cytol. 209, 117-206.   DOI
26 Matson, S., Markoulaki, S. and Ducibella, T. (2006) Antagonists of myosin light chain kinase and of myosin II inhibit specific events of egg activation in fertilized mouse eggs. Biol. Reprod. 74, 169-176.   DOI
27 Veronico, P., Gray, L. J., Jones, J. T., Bazzicalupo, P., Arbucci, S., Cortese, M. R., Di Vito, M. and De Giorgi, C. (2001) Nematode chitin synthases: gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia. Mol. Genet. Genomics. 266, 28-34.   DOI
28 Guven-Ozkan, T., Nishi, Y., Robertson, S. M. and Lin, R. (2008) Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4. Cell 135, 149-160.   DOI   ScienceOn
29 Nishi, Y., Rogers, E., Robertson, S. M. and Lin, R. (2008) Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2-primed MEX-5 and MEX-6. Development 135, 687-697.   DOI   ScienceOn
30 Pang, K. M., Ishidate, T., Nakamura, K., Shirayama, M., Trzepacz, C., Schubert, C. M., Priess, J. R. and Mello, C. C. (2004) The minibrain kinase homolog, mbk-2, is required for spindle positioning and asymmetric cell division in early C. elegans embryos. Dev. Biol. 265, 127-139.   DOI   ScienceOn
31 Pellettieri, J., Reinke, V., Kim, S. K. and Seydoux, G. (2003) Coordinate activation of maternal protein degradation during the egg-to-embryo transition in C. elegans. Dev. Cell 5, 451-462.   DOI   ScienceOn
32 Parry, J. M., Velarde, N. V., Lefkovith, A. J., Zegarek, M. H., Hang, J. S., Ohm, J., Klancer, R., Maruyama, R., Druzhinina, M. K., Grant, B. D., Piano, F. and Singson, A. (2009) EGG-4 and EGG-5 Link Events of the Oocyte-to-Embryo Transition with Meiotic Progression in C. elegans. Curr. Biol. 19, 1752-1757.   DOI   ScienceOn
33 Quintin, S., Mains, P. E., Zinke, A. and Hyman, A. A. (2003) The mbk-2 kinase is required for inactivation of MEI-1/katanin in the one-cell Caenorhabditis elegans embryo. EMBO Rep. 4, 1175-1181.   DOI   ScienceOn
34 Srayko, M., Buster, D. W., Bazirgan, O. A., McNally, F. J. and Mains, P. E. (2000) MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. Genes. Dev. 14, 1072-1084.
35 Maruyama, R., Velarde, N. V., Klancer, R., Gordon, S., Kadandale, P., Parry, J. M., Hang, J. S., Rubin, J., Stewart-Michaelis, A., Schweinsberg, P., Grant, B. D., Piano, F., Sugimoto, A. and Singson, A. (2007) EGG-3 regulates cell-surface and cortex rearrangements during egg activation in Caenorhabditis elegans. Curr. Biol. 17, 1555-1560.   DOI   ScienceOn
36 Stitzel, M. L., Cheng, K. C. and Seydoux, G. (2007) Regulation of MBK-2/Dyrk kinase by dynamic cortical anchoring during the oocyte-to-zygote transition. Curr. Biol. 17, 1545-1554.   DOI   ScienceOn
37 Cheng, K. C., Klancer, R., Singson, A. and Seydoux, G. (2009) Regulation of MBK-2/DYRK by CDK-1 and the pseudophosphatases EGG-4 and EGG-5 during the oocyte-to-embryo transition. Cell 139, 560-572.   DOI   ScienceOn
38 Tonks, N. K. (2009) Pseudophosphatases: grab and hold on. Cell 139, 464-465.   DOI   ScienceOn
39 Pils, B. and Schultz, J. (2004) Evolution of the multifunctional protein tyrosine phosphatase family. Mol. Biol. Evol. 21, 625-631.   DOI   ScienceOn
40 Tonks, N. K. (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat. Rev. Mol. Cell. Biol. 7, 833-846.   DOI   ScienceOn
41 Harris, M. T., Lai, K., Arnold, K., Martinez, H. F., Specht, C. A. and Fuhrman, J. A. (2000) Chitin synthase in the filarial parasite, Brugia malayi. Mol. Biochem. Parasitol. 111, 351-362.   DOI   ScienceOn
42 Gupta, S., Primakoff, P. and Myles, D. G. (2009) Can the presence of wild-type oocytes during insemination rescue the fusion defect of CD9 null oocytes? Mol. Reprod. Dev. 76, 602.   DOI   ScienceOn
43 Ito, C., Yamatoya, K., Yoshida, K., Maekawa, M., Miyado, K. and Toshimori, K. (2010) Tetraspanin family protein CD9 in the mouse sperm: unique localization, appearance, behavior and fate during fertilization. Cell Tissue Res. 340, 583-594.   DOI
44 McNally, K. L. and McNally, F. J. (2005) Fertilization initiates the transition from anaphase I to metaphase II during female meiosis in C. elegans. Dev. Biol. 282, 218-230.   DOI   ScienceOn
45 Golden, A., Sadler, P. L., Wallenfang, M. R., Schumacher, J. M., Hamill, D. R., Bates, G., Bowerman, B., Seydoux, G. and Shakes, D. C. (2000) Metaphase to anaphase (mat) transition-defective mutants in Caenorhabditis elegans. J. Cell Biol. 151, 1469-1482.   DOI
46 Browning, H. and Strome, S. (1996) A sperm-supplied factor required for embryogenesis in C. elegans. Development 122, 391-404.
47 Hill, D. P., Shakes, D. C., Ward, S. and Strome, S. (1989) A sperm-supplied product essential for initiation of normal embryogenesis in Caenorhabditis elegans is encoded by the paternal-effect embryonic-lethal gene, spe-11 [published erratum appears in Dev Biol 1990 May;139(1):230]. Dev. Biol. 136, 154-166.   DOI   ScienceOn
48 Sosnik, J., Miranda, P. V., Spiridonov, N. A., Yoon, S. Y., Fissore, R. A., Johnson, G. R. and Visconti, P. E. (2009) Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. J. Cell Sci. 122, 2741-2749.   DOI   ScienceOn
49 Jantsch-Plunger, V., Gonczy, P., Romano, A., Schnabel, H., Hamill, D., Schnabel, R., Hyman, A. A. and Glotzer, M. (2000) CYK-4: A Rho family gtpase activating protein (GAP) required for central spindle formation and cytokinesis. J. Cell Biol. 149, 1391-1404.   DOI
50 Jenkins, N., Saam, J. R. and Mango, S. E. (2006) CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization. Science 313, 1298-1301.   DOI   ScienceOn
51 Gadella, B. M., Tsai, P. S., Boerke, A. and Brewis, I. A. (2008) Sperm head membrane reorganisation during capacitation. Int. J. Dev. Biol. 52, 473-480.   DOI   ScienceOn
52 Toshimori, K., Saxena, D. K., Tanii, I. and Yoshinaga, K. (1998) An MN9 antigenic molecule, equatorin, is required for successful sperm-oocyte fusion in mice. Biol. Reprod. 59, 22-29.   DOI   ScienceOn
53 Ellerman, D. A., Pei, J., Gupta, S., Snell, W. J., Myles, D. and Primakoff, P. (2009) Izumo is part of a multiprotein family whose members form large complexes on mammalian sperm. Mol. Reprod. Dev. 76, 1188-1199.   DOI   ScienceOn
54 Le Naour, F., Rubinstein, E., Jasmin, C., Prenant, M. and Boucheix, C. (2000) Severely reduced female fertility in CD9-deficient mice. Science 287, 319-321.   DOI   ScienceOn
55 Miyado, K., Yamada, G., Yamada, S., Hasuwa, H., Nakamura, Y., Ryu, F., Suzuki, K., Kosai, K., Inoue, K., Ogura, A., Okabe, M. and Mekada, E. (2000) Requirement of CD9 on the egg plasma membrane for fertilization. Science 287, 321-324.   DOI   ScienceOn
56 Kaji, K., Oda, S., Shikano, T., Ohnuki, T., Uematsu, Y., Sakagami, J., Tada, N., Miyazaki, S. and Kudo, A. (2000) The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat. Genet. 24, 279-282.   DOI   ScienceOn
57 Hanzawa, H., de Ruwe, M. J., Albert, T. K., van Der Vliet, P. C., Timmers, H. T. and Boelens, R. (2001) The structure of the C4C4 ring finger of human NOT4 reveals features distinct from those of C3HC4 RING fingers. J. Biol. Chem. 276, 10185-10190.   DOI   ScienceOn
58 Miyado, K., Yoshida, K., Yamagata, K., Sakakibara, K., Okabe, M., Wang, X., Miyamoto, K., Akutsu, H., Kondo, T., Takahashi, Y., Ban, T., Ito, C., Toshimori, K., Nakamura, A., Ito, M., Miyado, M., Mekada, E. and Umezawa, A. (2008) The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc. Natl. Acad. Sci. U.S.A. 105, 12921-12926.   DOI   ScienceOn
59 Barraud-Lange, V., Naud-Barriant, N., Bomsel, M., Wolf, J. P. and Ziyyat, A. (2007) Transfer of oocyte membrane fragments to fertilizing spermatozoa. FASEB J. 21, 3446-3449.   DOI   ScienceOn
60 Albert, T. K., Hanzawa, H., Legtenberg, Y. I., de Ruwe, M. J., van den Heuvel, F. A., Collart, M. A., Boelens, R. and Timmers, H. T. (2002) Identification of a ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor complex. EMBO J. 21, 355-364.   DOI   ScienceOn
61 Deshaies, R. J. and Joazeiro, C. A. (2009) RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399-434.   DOI   ScienceOn
62 Nykjaer, A. and Willnow, T. E. (2002) The low-density lipoprotein receptor gene family: a cellular Swiss army knife? Trends. Cell Biol. 12, 273-280.   DOI   ScienceOn
63 Vjugina, U. and Evans, J. P. (2008) New insights into the molecular basis of mammalian sperm-egg membrane interactions. Front. Biosci. 13, 462-476.   DOI
64 Okabe, M., Adachi, T., Takada, K., Oda, H., Yagasaki, M., Kohama, Y. and Mimura, T. (1987) Capacitation-related changes in antigen distribution on mouse sperm heads and its relation to fertilization rate in vitro. J. Reprod. Immunol. 11, 91-100.   DOI   ScienceOn
65 Roberts, T. M., Pavalko, F. M. and Ward, S. (1986) Membrane and cytoplasmic proteins are transported in the same organell complex during nematode spermatogenesis. J. Cell Biology 102, 1787-1796.   DOI
66 Okabe, M., Yagasaki, M., Oda, H., Matzno, S., Kohama, Y. and Mimura, T. (1988) Effect of a monoclonal anti-mouse sperm antibody (OBF13) on the interaction of mouse sperm with zona-free mouse and hamster eggs. J. Reprod. Immunol. 13, 211-219.   DOI   ScienceOn
67 Inoue, N., Ikawa, M., Isotani, A. and Okabe, M. (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434, 234-238.   DOI   ScienceOn
68 Inoue, N., Ikawa, M. and Okabe, M. (2008) Putative sperm fusion protein IZUMO and the role of N-glycosylation. Biochem. Biophys. Res. Commun. 377, 910-914.   DOI   ScienceOn
69 Shakes, D. and Ward, S. (1989) Mutations that disrupt the morphogenesis and localization of a sperm-specific organelle in Caenorhabditis elegans. Developmental Biology 134, 307-316.   DOI   ScienceOn
70 Xu, X. Z. and Sternberg, P. W. (2003) A C. elegans sperm TRP protein required for sperm-egg interactions during fertilization. Cell 114, 285-297.   DOI   ScienceOn
71 Castellano, L. E., Trevino, C. L., Rodriguez, D., Serrano, C. J., Pacheco, J., Tsutsumi, V., Felix, R. and Darszon, A. (2003) Transient receptor potential (TRPC) channels in human sperm: expression, cellular localization and involvement in the regulation of flagellar motility. FEBS Lett. 541, 69-74.   DOI   ScienceOn
72 Jungnickel, M. K., Marrero, H., Birnbaumer, L., Lemos, J. R. and Florman, H. M. (2001) Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat. Cell. Biol. 3, 499-502.   DOI   ScienceOn
73 Schindl, R. and Romanin, C. (2007) Assembly domains in TRP channels. Biochem. Soc. Trans. 35, 84-85.   DOI   ScienceOn
74 Goldstein, B. and Hird, S. N. (1996) Specification of the anteroposterior axis in Caenorhabditis elegans. Development 122, 1467-1474.
75 Beech, D. J., Bahnasi, Y. M., Dedman, A. M. and Al-Shawaf, E. (2009) TRPC channel lipid specificity and mechanisms of lipid regulation. Cell Calcium 45, 583-588.   DOI   ScienceOn
76 Kroft, T. L., Gleason, E. J. and L'Hernault S, W. (2005) The spe-42 gene is required for sperm-egg interactions during C. elegans fertilization and encodes a sperm-specific transmembrane protein. Dev. Biol. 286, 169-181.   DOI   ScienceOn
77 Miyamoto, T. (2006) The dendritic cell-specific transmembrane protein DC-STAMP is essential for osteoclast fusion and osteoclast bone-resorbing activity. Mod. Rheumatol. 16, 341-342.   DOI
78 Jorgensen, E. M. and Mango, S. E. (2002) The art and design of genetic screens: caenorhabditis elegans. Nat. Rev. Genet. 3, 356-369.   DOI   ScienceOn
79 Nishimura, H. and L'Hernault, S. W. (2010) Spermatogenesis-defective (spe) mutants of the nematode Caenorhabditis elegans provide clues to solve the puzzle of male germline functions during reproduction. Dev. Dyn. 239, 1502-1514.
80 L'Hernault, S. W., Shakes, D. C. and Ward, S. (1988) Developmental genetics of chromosome I spermatogenesis-defective mutants in the nematode Caenorhabditis elegans. Genetics 120, 435-452.
81 Kadandale, P., Stewart-Michaelis, A., Gordon, S., Rubin, J., Klancer, R., Schweinsberg, P., Grant, B. D. and Singson, A. (2005) The egg surface LDL receptor repeatcontaining proteins EGG-1 and EGG-2 are required for fertilization in Caenorhabditis elegans. Curr. Biol. 15, 2222-2229.   DOI   ScienceOn
82 Singson, A., Mercer, K. B. and L'Hernault, S. W. (1998) The C. elegans spe-9 gene encodes a sperm transmembrane protein that contains EGF-like repeats and is required for fertilization. Cell 93, 71-79.   DOI   ScienceOn
83 Nelson, G. A. and Ward, S. (1980) Vesicle fusion, pseudopod extension and amoeboid motility are induced in nematode spermatids by the ionophore monensin. Cell 19, 457-464.   DOI   ScienceOn
84 Putiri, E., Zannoni, S., Kadandale, P. and Singson, A. (2004) Functional domains and temperature-sensitive mutations in SPE-9, an EGF repeat-containing protein required for fertility in Caenorhabditis elegans. Dev. Biol. 272, 448-459.   DOI   ScienceOn
85 Chatterjee, I., Richmond, A., Putiri, E., Shakes, D. C. and Singson, A. (2005) The Caenorhabditis elegans spe-38 gene encodes a novel four-pass integral membrane protein required for sperm function at fertilization. Development 132, 2795-2808.   DOI   ScienceOn
86 L'Hernault S, W. (1997) Spermatogenesis; in C. Elegans II. Riddle, D. L., Blumenthal, T., Meyer, B. J. and Priess, J. R. (eds.), pp. 271-294, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.
87 Ward, S., Hogan, E. and Nelson, G. A. (1983) The initiation of spermiogenesis in the nematode Caenorhabditis elegans. Dev. Biol. 98, 70-79.   DOI   ScienceOn
88 Bandyopadhyay, J., Lee, J., Lee, J. I., Yu, J. R., Jee, C., Cho, J. H., Jung, S., Lee, M. H., Zannoni, S., Singson, A., Kim, D., H., Koo, H. S. and Ahnn, J. (2002) Calcineurin, a calcium/calmodulin-dependent protein phosphatase, is involved in movement, fertility, egg laying, and growth in caenorhabditis elegans. Mol. Biol. Cell 13, 3281- 3293.   DOI   ScienceOn
89 Washington, N. L. and Ward, S. (2006) FER-1 regulates Ca2+ -mediated membrane fusion during C. elegans spermatogenesis. J. Cell Sci. 119, 2552-2562.   DOI   ScienceOn
90 Kubagawa, H. M., Watts, J. L., Corrigan, C., Edmonds, J. W., Sztul, E., Browse, J. and Miller, M. A. (2006) Oocyte signals derived from polyunsaturated fatty acids control sperm recruitment in vivo. Nat. Cell Biol. 8, 1143-1148.   DOI   ScienceOn
91 L'Hernault, S. W. (2006) Spermatogenesis; in Worm-Book: online review of C. elegans biology. Community, T. C. e. R. (ed.), http://www.wormbook.org.
92 Miller, M. A., Nguyen, V. Q., Lee, M. H., Kosinski, M., Schedl, T., Caprioli, R. M. and Greenstein, D. (2001) A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. Science 291, 2144-2147.   DOI   ScienceOn
93 Samuel, A. D., Murthy, V. N. and Hengartner, M. O. (2001) Calcium dynamics during fertilization in C. elegans. BMC Dev. Biol. 1, 8.   DOI
94 Zannoni, S., L'Hernault, S. W. and Singson, A. W. (2003) Dynamic localization of SPE-9 in sperm: a protein required for sperm-oocyte interactions in Caenorhabditis elegans. BMC Dev. Biol. 3, 10.   DOI   ScienceOn
95 Consortium, T. C. e. S. (1998) Genome sequence of the nematode C. elegans a platform for investigating biology. Science 282, 2012-2018.   DOI   ScienceOn
96 Sulston, J. E. and Horvitz, H. R. (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56, 110-156.   DOI   ScienceOn
97 Riddle, D. L., Blumenthal, T., Meyer, B. J. and Priess, J. R. (1997) C. elegans II, pp. 1222, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.
98 Horner, V. L. and Wolfner, M. F. (2008) Transitioning from egg to embryo: triggers and mechanisms of egg activation. Dev. Dyn. 237, 527-544.   DOI   ScienceOn
99 Govindan, J. A. and Greenstein, D. (2007) Embryogenesis: anchors away! Curr. Biol. 17, R890-892.   DOI   ScienceOn
100 Yamamoto, I., Kosinski, M. E. and Greenstein, D. (2006) Start me up: cell signaling and the journey from oocyte to embryo in C. elegans. Dev. Dyn. 235, 571-585.   DOI   ScienceOn