Browse > Article
http://dx.doi.org/10.4014/jmb.2208.08002

The Microbiome-Immune Axis Therapeutic Effects in Cancer Treatments  

Son, Young Min (Department of Systems Biotechnology, Chung-Ang University)
Kim, Jihwan (Department of Systems Biotechnology, Chung-Ang University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.9, 2022 , pp. 1086-1097 More about this Journal
Abstract
During the last decades, research and therapeutic methods in cancer treatment have been evolving. As the results, nowadays, cancer patients are receiving several types of treatments, ranging from chemotherapy and radiation therapy to surgery and immunotherapy. In fact, most cancer patients take a combination of current anti-cancer therapies to improve the efficacy of treatment. However, current strategies still cause some side effects to patients, such as pain and depression. Therefore, there is the need to discover better ways to eradicate cancer whilst minimizing side effects. Recently, immunotherapy, particularly immune checkpoint blockade, is rising as an effective anti-cancer treatment. Unlike chemotherapy or radiation therapy, immunotherapy has few side effects and a higher tumor cell removal efficacy depend on cellular immunological mechanisms. Moreover, recent studies suggest that tissue immune responses are regulated by their microbiome composition. Each tissue has their specific microenvironment, which makes their microbiome composition different, particularly in the context of different types of cancer, such as breast, colorectal, kidney, lung, and skin. Herein, we review the current understanding of the relationship of immune responses and tissue microbiome in cancer in both animal and human studies. Moreover, we discuss the cancer-microbiome-immune axis in the context of cancer development and treatment. Finally, we speculate on strategies to control tissue microbiome alterations that may synergistically affect the immune system and impact cancer treatment outcomes.
Keywords
Microbiome; immune responses; cancers; immunotherapy; tissue microorganisms; microbiome-immune axis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Schaupp L, Muth S, Rogell L, Kofoed-Branzk M, Melchior F, Lienenklaus S, et al. 2020. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 181: 1080-1096 e1019.   DOI
2 Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, et al. 2018. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360: eaan5931.   DOI
3 Onoue M, Kado S, Sakaitani Y, Uchida K, Morotomi M. 1997. Specific species of intestinal bacteria influence the induction of aberrant crypt foci by 1,2-dimethylhydrazine in rats. Cancer Lett. 113: 179-186.   DOI
4 Sears CL, Geis AL, Housseau F. 2014. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J. Clin. Invest. 124: 4166-4172.   DOI
5 Lee SH, Sung JY, Yong D, Chun J, Kim SY, Song JH, et al. 2016. Characterization of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer 102: 89-95.   DOI
6 Liu NN, Ma Q, Ge Y, Yi CX, Wei LQ, Tan JC, et al. 2020. Microbiome dysbiosis in lung cancer: from composition to therapy. NPJ Precis Oncol. 4: 33.   DOI
7 Liu Y, O'Brien JL, Ajami NJ, Scheurer ME, Amirian ES, Armstrong G, et al. 2018. Lung tissue microbial profile in lung cancer is distinct from emphysema. Am. J. Cancer Res. 8: 1775-1787.
8 Cameron SJS, Lewis KE, Huws SA, Hegarty MJ, Lewis PD, Pachebat JA, et al. 2017. A pilot study using metagenomic sequencing of the sputum microbiome suggests potential bacterial biomarkers for lung cancer. PLoS One 12: e0177062.   DOI
9 Sims TT, El Alam MB, Karpinets TV, Dorta-Estremera S, Hegde VL, Nookala S, et al. 2021. Gut microbiome diversity is an independent predictor of survival in cervical cancer patients receiving chemoradiation. Commun. Biol. 4: 237.   DOI
10 Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP, et al. 2005. Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J. Exp. Med. 201: 1591-1602.   DOI
11 Young MR, Petruzzelli GJ, Kolesiak K, Achille N, Lathers DM, Gabrilovich DI. 2001. Human squamous cell carcinomas of the head and neck chemoattract immune suppressive CD34(+) progenitor cells. Hum. Immunol. 62: 332-341.   DOI
12 Nagaraj S, Gabrilovich DI. 2010. Myeloid-derived suppressor cells in human cancer. Cancer J. 16: 348-353.   DOI
13 Ramirez-Labrada AG, Isla D, Artal A, Arias M, Rezusta A, Pardo J, et al. 2020. The influence of lung microbiota on lung carcinogenesis, immunity, and immunotherapy. Trends Cancer 6: 86-97.   DOI
14 Wong SH, Zhao L, Zhang X, Nakatsu G, Han J, Xu W, et al. 2017. Gavage of fecal samples from patients with colorectal cancer promotes intestinal Carcinogenesis in Germ-Free and Conventional Mice. Gastroenterology 153: 1621-1633 e1626.   DOI
15 Nakatsu G, Li X, Zhou H, Sheng J, Wong SH, Wu WK, et al. 2015. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun. 6: 8727.   DOI
16 Lu Y, Chen J, Zheng J, Hu G, Wang J, Huang C, et al. 2016. Mucosal adherent bacterial dysbiosis in patients with colorectal adenomas. Sci. Rep. 6: 26337.   DOI
17 Gao Z, Guo B, Gao R, Zhu Q, Qin H. 2015. Microbiota disbiosis is associated with colorectal cancer. Front. Microbiol. 6: 20.   DOI
18 Purcell RV, Pearson J, Aitchison A, Dixon L, Frizelle FA, Keenan JI. 2017. Colonization with enterotoxigenic bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS One 12: e0171602.   DOI
19 Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, et al. 2009. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15: 1016-1022.   DOI
20 Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. 2013. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 14: 195-206.   DOI
21 Yang Y, Jobin C. 2017. Novel insights into microbiome in colitis and colorectal cancer. Curr. Opin. Gastroenterol. 33: 422-427.   DOI
22 Pathria P, Louis TL, Varner JA. 2019. Targeting tumor-associated macrophages in cancer. Trends Immunol. 40: 310-327.   DOI
23 Shen S, Prame Kumar K, Stanley D, Moore RJ, Van TTH, Wen SW, et al. 2018. Invariant natural killer T cells shape the gut microbiota and regulate neutrophil recruitment and function during intestinal inflammation. Front. Immunol. 9: 999.   DOI
24 Mills CD. 2012. M1 and M2 macrophages: Oracles of health and disease. Crit. Rev. Immunol. 32: 463-488.   DOI
25 Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. 2014. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40: 274-288.   DOI
26 Dong Q, Chen ES, Zhao C, Jin C. 2021. Host-microbiome interaction in lung cancer. Front. Immunol. 12: 679829.   DOI
27 Lloyd CM, Marsland BJ. 2017. Lung homeostasis: influence of age, microbes, and the immune system. Immunity 46: 549-561.   DOI
28 Palucka AK, Coussens LM. 2016. The basis of oncoimmunology. Cell 164: 1233-1247.   DOI
29 Le Noci V, Guglielmetti S, Arioli S, Camisaschi C, Bianchi F, Sommariva M, et al. 2018. Modulation of pulmonary microbiota by antibiotic or probiotic aerosol therapy: a strategy to promote immunosurveillance against lung metastases. Cell Rep. 24: 3528-3538.   DOI
30 Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, et al. 2018. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8: 403-416.   DOI
31 Park HE, Kim JH, Cho NY, Lee HS, Kang GH. 2017. Intratumoral Fusobacterium nucleatum abundance correlates with macrophage infiltration and CDKN2A methylation in microsatellite-unstable colorectal carcinoma. Virchows Arch. 471: 329-336.   DOI
32 Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. 2011. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331: 337-341.   DOI
33 Salvador R, Zhang A, Horai R, Caspi RR. 2020. Microbiota as drivers and as therapeutic targets in ocular and tissue specific autoimmunity. Front. Cell Dev. Biol. 8: 606751.   DOI
34 Burnet FM. 1970. The concept of immunological surveillance. Prog. Exp. Tumor Res. 13: 1-27.   DOI
35 Rygaard J, Povlsen CO. 1976. The nude mouse vs. the hypothesis of immunological surveillance. Transplant. Rev. 28: 43-61.
36 Dunn GP, Koebel CM, Schreiber RD. 2006. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 6: 836-848.   DOI
37 Tauriello DVF, Sancho E, Batlle E. 2022. Overcoming TGFbeta-mediated immune evasion in cancer. Nat. Rev. Cancer 22: 25-44.   DOI
38 Tanaka A, Sakaguchi S. 2017. Regulatory T cells in cancer immunotherapy. Cell Res. 27: 109-118.   DOI
39 Sears CL, Garrett WS. 2014. Microbes, microbiota, and colon cancer. Cell Host Microbe. 15: 317-328.   DOI
40 Togashi Y, Shitara K, Nishikawa H. 2019. Regulatory T cells in cancer immunosuppression - implications for anticancer therapy. Nat. Rev. Clin. Oncol. 16: 356-371.   DOI
41 Chen BJ, Zhao JW, Zhang DH, Zheng AH, Wu GQ. 2022. Immunotherapy of cancer by targeting regulatory T cells. Int. Immunopharmacol. 104: 108469.   DOI
42 Fan Y, Pedersen O. 2021. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19: 55-71.   DOI
43 Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. 2018. Current understanding of the human microbiome. Nat. Med. 24: 392-400.   DOI
44 Hooper LV, Littman DR, Macpherson AJ. 2012. Interactions between the microbiota and the immune system. Science 336: 1268-1273.   DOI
45 Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, et al. 2009. A review of human carcinogens--Part B: biological agents. Lancet Oncol. 10: 321-322.   DOI
46 Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, et al. 2012. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J. Exp. Med. 209: 903-911.   DOI
47 Wang R, Tang R, Li B, Ma X, Schnabl B, Tilg H. 2021. Gut microbiome, liver immunology, and liver diseases. Cell Mol. Immunol. 18: 4-17.   DOI
48 Shapira I, Sultan K, Lee A, Taioli E. 2013. Evolving concepts: how diet and the intestinal microbiome act as modulators of breast malignancy. ISRN Oncol. 2013: 693920.   DOI
49 van Vliet MJ, Tissing WJ, Dun CA, Meessen NE, Kamps WA, de Bont ES, et al. 2009. Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin. Infect. Dis. 49: 262-270.   DOI
50 Weber D, Oefner PJ, Hiergeist A, Koestler J, Gessner A, Weber M, et al. 2015. Low urinary indoxyl sulfate levels early after transplantation reflect a disrupted microbiome and are associated with poor outcome. Blood 126: 1723-1728.
51 Jacobsohn DA, Vogelsang GB. 2007. Acute graft versus host disease. Orphanet. J. Rare Dis. 2: 35.   DOI
52 Heimesaat MM, Nogai A, Bereswill S, Plickert R, Fischer A, Loddenkemper C, et al. 2010. MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease. Gut 59: 1079-1087.   DOI
53 Wang F, Yin Q, Chen L, Davis MM. 2018. Bifidobacterium can mitigate intestinal immunopathology in the context of CTLA-4 blockade. Proc. Natl. Acad. Sci. USA 115: 157-161.   DOI
54 Ferrere G, Wrzosek L, Cailleux F, Turpin W, Puchois V, Spatz M, et al. 2017. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J. Hepatol. 66: 806-815.   DOI
55 Shah MA. 2017. Gastric cancer: The gastric microbiota - bacterial diversity and implications. Nat. Rev. Gastroenterol. Hepatol. 14: 692-693.   DOI
56 Doorakkers E, Lagergren J, Engstrand L, Brusselaers N. 2018. Helicobacter pylori eradication treatment and the risk of gastric adenocarcinoma in a Western population. Gut 67: 2092-2096.   DOI
57 Zhou D, Pan Q, Shen F, Cao HX, Ding WJ, Chen YW, et al. 2017. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci. Rep. 7: 1529.   DOI
58 Philips CA, Pande A, Shasthry SM, Jamwal KD, Khillan V, Chandel SS, et al. 2017. Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic hepatitis: A pilot study. Clin. Gastroenterol. Hepatol. 15: 600-602.   DOI
59 Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. 2018. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359: 1151-1156.   DOI
60 Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E, Pernot J, et al. 2018. Dietary fiber confers protection against flu by shaping Ly6c(-) patrolling monocyte hematopoiesis and CD8(+) T cell metabolism. Immunity 48: 992-1005 e1008.   DOI
61 Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, et al. 2013. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342: 971-976.   DOI
62 He Z, Gharaibeh RZ, Newsome RC, Pope JL, Dougherty MW, Tomkovich S, et al. 2019. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut. 68: 289-300.   DOI
63 Mima K, Nakagawa S, Sawayama H, Ishimoto T, Imai K, Iwatsuki M, et al. 2017. The microbiome and hepatobiliary-pancreatic cancers. Cancer Lett. 402: 9-15.   DOI
64 Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. 2012. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12: 253-268.   DOI
65 Staveley-O'Carroll K, Sotomayor E, Montgomery J, Borrello I, Hwang L, Fein S, et al. 1998. Induction of antigen-specific T cell anergy: An early event in the course of tumor progression. Proc. Natl. Acad. Sci. USA 95: 1178-1183.   DOI
66 Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. 2015. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350: 1084-1089.   DOI
67 Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, et al. 2016. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7: 10391.   DOI
68 Sokol H, Adolph TE. 2018. The microbiota: an underestimated actor in radiation-induced lesions? Gut 67: 1-2.   DOI
69 Gostin LO, Magnusson RS, Krech R, Patterson DW, Solomon SA, Walton D, et al. 2017. Advancing the right to health-the vital role of law. Am. J. Public Health 107: 1755-1756.   DOI
70 Keller MJ, Huber A, Espinoza L, Serrano MG, Parikh HI, Buck GA, et al. 2019. Impact of Herpes simplex virus type 2 and human immunodeficiency virus dual infection on female genital tract mucosal immunity and the vaginal microbiome. J. Infect. Dis. 220: 852-861.   DOI
71 Jiang N, Xie F, Chen L, Chen F, Sui L. 2020. The effect of TLR4 on the growth and local inflammatory microenvironment of HPV-related cervical cancer in vivo. Infect. Agent Cancer 15: 12.   DOI
72 Chao XP, Sun TT, Wang S, Fan QB, Shi HH, Zhu L, et al. 2019. Correlation between the diversity of vaginal microbiota and the risk of high-risk human papillomavirus infection. Int. J. Gynecol. Cancer 29: 28-34.   DOI
73 Chao X, Sun T, Wang S, Tan X, Fan Q, Shi H, et al. 2020. Research of the potential biomarkers in vaginal microbiome for persistent high-risk human papillomavirus infection. Ann. Transl. Med. 8: 100.   DOI
74 Lakritz JR, Poutahidis T, Levkovich T, Varian BJ, Ibrahim YM, Chatzigiagkos A, et al. 2014. Beneficial bacteria stimulate host immune cells to counteract dietary and genetic predisposition to mammary cancer in mice. Int. J. Cancer 135: 529-540.   DOI
75 Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S, Oyadomari S, et al. 2013. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499: 97-101.   DOI
76 Garcia-Castillo V, Sanhueza E, McNerney E, Onate SA, Garcia A. 2016. Microbiota dysbiosis: a new piece in the understanding of the carcinogenesis puzzle. J. Med. Microbiol. 65: 1347-1362.   DOI
77 Kwa M, Plottel CS, Blaser MJ, Adams S. 2016. The intestinal microbiome and estrogen receptor-positive female breast cancer. J. Natl. Cancer Inst. 108: djw029.
78 Parhi L, Alon-Maimon T, Sol A, Nejman D, Shhadeh A, Fainsod-Levi T, et al. 2020. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat. Commun. 11: 3259.   DOI
79 Weinberg F, Dickson RP, Nagrath D, Ramnath N. 2020. The lung microbiome: A central mediator of host inflammation and metabolism in lung cancer patients? Cancers (Basel) 13: 13.   DOI
80 Siegel RL, Miller KD, Jemal A. 2019. Cancer statistics, 2019. CA Cancer J. Clin. 69: 7-34.   DOI
81 Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, et al. 2015. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 35 Suppl: S185-S198.   DOI
82 Heng B, Glenn WK, Ye Y, Tran B, Delprado W, Lutze-Mann L, et al. 2009. Human papilloma virus is associated with breast cancer. Br. J. Cancer 101: 1345-1350.   DOI
83 Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105-108.   DOI
84 Saqib U, Sarkar S, Suk K, Mohammad O, Baig MS, Savai R. 2018. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget 9: 17937-17950.   DOI
85 Van den Bossche J, Saraber DL. 2018. Metabolic regulation of macrophages in tissues. Cell Immunol. 330: 54-59.   DOI
86 Choi IJ, Kook MC, Kim YI, Cho SJ, Lee JY, Kim CG, et al. 2018. Helicobacter pylori Therapy for the prevention of metachronous gastric vancer. N. Engl. J. Med. 378: 1085-1095.   DOI
87 Viale PH. 2020. The American Cancer Society's Facts & Figures: 2020 Edition. J. Adv. Pract. Oncol. 11: 135-136.
88 Islami F, Goding Sauer A, Miller KD, Siegel RL, Fedewa SA, Jacobs EJ, et al. 2018. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J. Clin. 68: 31-54.   DOI
89 Sher G, Salman NA, Kulinski M, Fadel RA, Gupta VK, Anand A, et al. 2020. Prevalence and type distribution of high-risk human papillomavirus (HPV) in breast cancer: A qatar based study. Cancers (Basel) 12: 1528.   DOI
90 Di Lonardo A, Venuti A, Marcante ML. 1992. Human papillomavirus in breast cancer. Breast Cancer Res. Treat. 21: 95-100.   DOI
91 Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, et al. 2020. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368: 973-980.   DOI
92 Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336: 489-493.   DOI
93 Jin C, Lagoudas GK, Zhao C, Bullman S, Bhutkar A, Hu B, et al. 2019. Commensal microbiota promote lung cancer development via gammadelta T cells. Cell 176: 998-1013 e1016.   DOI
94 Itahashi K, Irie T, Nishikawa H. 2022. Regulatory T-cell development in the tumor microenvironment. Eur. J. Immunol. 52: 1216-1227.   DOI
95 Sorbara MT, Pamer EG. 2022. Microbiome-based therapeutics. Nat. Rev. Microbiol. 20: 365-380.   DOI
96 Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. 2013. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 14: 207-215.   DOI
97 Yang Y, Torchinsky MB, Gobert M, Xiong H, Xu M, Linehan JL, et al. 2014. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510: 152-156.   DOI
98 Sun M, Wu W, Chen L, Yang W, Huang X, Ma C, et al. 2018. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat. Commun. 9: 3555.   DOI
99 Postow MA, Callahan MK, Wolchok JD. 2015. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33: 1974-1982.   DOI
100 Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. 2013. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342: 967-970.   DOI
101 Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, et al. 2001. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410: 1107-1111.   DOI
102 van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. 2013. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368: 407-415.   DOI
103 Geuking MB, Cahenzli J, Lawson MA, Ng DC, Slack E, Hapfelmeier S, et al. 2011. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34: 794-806.   DOI
104 Lee N, Kim WU. 2017. Microbiota in T-cell homeostasis and inflammatory diseases. Exp. Mol. Med. 49: e340.   DOI
105 Abdel-Gadir A, Stephen-Victor E, Gerber GK, Noval Rivas M, Wang S, Harb H, et al. 2019. Microbiota therapy acts via a regulatory T cell MyD88/RORgammat pathway to suppress food allergy. Nat. Med. 25: 1164-1174.   DOI
106 Sethi V, Kurtom S, Tarique M, Lavania S, Malchiodi Z, Hellmund L, et al. 2018. Gut Microbiota promotes tumor growth in mice by modulating immune response. Gastroenterology 155: 33-37 e36.   DOI
107 Kim SK, Cho SW. 2022. The evasion mechanisms of cancer immunity and drug intervention in the tumor microenvironment. Front. Pharmacol. 13: 868695.   DOI
108 Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, et al. 2018. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359: 91-97.   DOI
109 Yu G, Gail MH, Consonni D, Carugno M, Humphrys M, Pesatori AC, et al. 2016. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features. Genome Biol. 17: 163.   DOI
110 Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP, et al. 2017. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia 19: 848-855.   DOI
111 Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, et al. 2018. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359: 104-108.   DOI
112 Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. 2018. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359: 97-103.   DOI
113 Segal LN, Clemente JC, Tsay JC, Koralov SB, Keller BC, Wu BG, et al. 2016. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat. Microbiol. 1: 16031.   DOI
114 Blum HE. 2017. The human microbiome. Adv. Med. Sci. 62: 414-420.   DOI
115 Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, et al. 2018. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. Front. Immunol. 9: 1830.   DOI
116 Marchesi JR, Ravel J. 2015. The vocabulary of microbiome research: a proposal. Microbiome 3: 31.   DOI
117 Cho I, Blaser MJ. 2012. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13: 260-270.   DOI
118 Wensel CR, Pluznick JL, Salzberg SL, Sears CL. 2022. Next-generation sequencing: insights to advance clinical investigations of the microbiome. J. Clin. Invest. 132: e154944.   DOI
119 Finotello F, Mastrorilli E, Di Camillo B. 2018. Measuring the diversity of the human microbiota with targeted next-generation sequencing. Brief Bioinform. 19: 679-692.
120 Shen S, Lim G, You Z, Ding W, Huang P, Ran C, et al. 2017. Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat. Neurosci. 20: 1213-1216.   DOI
121 Berg G, Rybakova D, Fischer D, Cernava T, Verges MC, Charles T, et al. 2020. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8: 103.   DOI
122 Malla MA, Dubey A, Kumar A, Yadav S, Hashem A, Abd Allah EF. 2018. Exploring the human microbiome: the potential future role of next-generation sequencing in disease diagnosis and treatment. Front. Immunol. 9: 2868.   DOI
123 Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, Allison JP, et al. 2001. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 194: 823-832.   DOI
124 Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. 2013. Dietary intervention impact on gut microbial gene richness. Nature 500: 585-588.   DOI
125 Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. 2019. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16: 605-616.   DOI
126 Wang H, Geier MS, Howarth GS. 2016. Prebiotics: a potential treatment strategy for the chemotherapy-damaged gut? Crit. Rev. Food Sci. Nutr. 56: 946-956.   DOI
127 Bogen B. 1996. Peripheral T cell tolerance as a tumor escape mechanism: deletion of CD4+ T cells specific for a monoclonal immunoglobulin idiotype secreted by a plasmacytoma. Eur. J. Immunol. 26: 2671-2679.   DOI
128 Vignali DA, Collison LW, Workman CJ. 2008. How regulatory T cells work. Nat. Rev. Immunol. 8: 523-532.   DOI
129 Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312: 1355-1359.   DOI
130 Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. 2005. Host-bacterial mutualism in the human intestine. Science 307: 1915-1920.   DOI
131 Morais LH, Schreiber HLt, Mazmanian SK. 2021. The gut microbiota-brain axis in behaviour and brain disorders. Nat. Rev. Microbiol. 19: 241-255.   DOI
132 Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, et al. 2018. The gut-liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15: 397-411.   DOI
133 Dizman N, Meza L, Bergerot P, Alcantara M, Dorff T, Lyou Y, et al. 2022. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat. Med. 28: 704-712.   DOI
134 Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, et al. 2016. Culturing of 'unculturable' human microbiota reveals novel taxa and extensive sporulation. Nature 533: 543-546.   DOI
135 Sender R, Fuchs S, Milo R. 2016. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14: e1002533.   DOI
136 Zheng D, Liwinski T, Elinav E. 2020. Interaction between microbiota and immunity in health and disease. Cell Res. 30: 492-506.   DOI
137 Goldin BR, Gorbach SL. 1980. Effect of Lactobacillus acidophilus dietary supplements on 1,2-dimethylhydrazine dihydrochloride-induced intestinal cancer in rats. J. Natl. Cancer Inst. 64: 263-265.   DOI
138 Thirabunyanon M, Boonprasom P, Niamsup P. 2009. Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol. Lett. 31: 571-576.   DOI
139 Liu CM, Packman ZR, Abraham AG, Serwadda DM, Nalugoda F, Aziz M, et al. 2019. The effect of antiretroviral therapy initiation on the vaginal microbiome in HIV-infected women. Open Forum Infect. Dis. 6: ofz328.   DOI
140 Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W, et al. 2019. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178: 795-806 e712.   DOI
141 Blanco R, Carrillo-Beltran D, Munoz JP, Corvalan AH, Calaf GM, Aguayo F. 2021. Human Papillomavirus in breast carcinogenesis: A passenger, a cofactor, or a causal agent? Biology (Basel) 10: 804.
142 Kan CY, Iacopetta BJ, Lawson JS, Whitaker NJ. 2005. Identification of human papillomavirus DNA gene sequences in human breast cancer. Br. J. Cancer 93: 946-948.   DOI
143 Thompson KJ, Ingle JN, Tang X, Chia N, Jeraldo PR, Walther-Antonio MR, et al. 2017. A comprehensive analysis of breast cancer microbiota and host gene expression. PLoS One 12: e0188873.   DOI
144 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68: 394-424.   DOI
145 Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, et al. 2017. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol. 15: 55-63.   DOI
146 Rizzo AE, Gordon JC, Berard AR, Burgener AD, Avril S. 2021. The female reproductive tract microbiome-implications for gynecologic cancers and personalized medicine. J. Pers. Med. 11: 546.   DOI
147 Jain T, Sharma P, Are AC, Vickers SM, Dudeja V. 2021. New insights into the cancer-microbiome-immune axis: decrypting a decade of discoveries. Front. Immunol. 12: 622064.   DOI
148 Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM, Troy EB, et al. 2012. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149: 1578-1593.   DOI
149 Reddy BS, Narisawa T, Wright P, Vukusich D, Weisburger JH, Wynder EL. 1975. Colon carcinogenesis with azoxymethane and dimethylhydrazine in germ-free rats. Cancer Res. 35: 287-290.
150 Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, et al. 2002. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 168: 689-695.   DOI
151 Schmielau J, Finn OJ. 2001. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res. 61: 4756-4760.
152 Yu H, Pardoll D, Jove R. 2009. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9: 798-809.   DOI
153 Kusmartsev S, Gabrilovich DI. 2006. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol. Immunother. 55: 237-245.   DOI
154 Nair S, Dhodapkar MV. 2017. Natural killer T cells in cancer immunotherapy. Front. Immunol. 8: 1178.   DOI
155 Paulos CM, Wrzesinski C, Kaiser A, Hinrichs CS, Chieppa M, Cassard L, et al. 2007. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J. Clin. Invest. 117: 2197-2204.   DOI
156 O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. 2015. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277: 32-48.   DOI
157 Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA, et al. 2011. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin. Gastroenterol. Hepatol. 9: 1044-1049.   DOI
158 Swidsinski A, Khilkin M, Kerjaschki D, Schreiber S, Ortner M, Weber J, et al. 1998. Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology 115: 281-286.   DOI
159 Liu HX, Tao LL, Zhang J, Zhu YG, Zheng Y, Liu D, et al. 2018. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int. J. Cancer 142: 769-778.   DOI
160 Yan X, Yang M, Liu J, Gao R, Hu J, Li J, et al. 2015. Discovery and validation of potential bacterial biomarkers for lung cancer. Am. J. Cancer Res. 5: 3111-3122.
161 Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59-65.   DOI
162 Eslami S, Hadjati J, Motevaseli E, Mirzaei R, Farashi Bonab S, Ansaripour B, et al. 2016. Lactobacillus crispatus strain SJ-3C-US induces human dendritic cells (DCs) maturation and confers an anti-inflammatory phenotype to DCs. APMIS 124: 697-710.   DOI
163 Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. 2021. The microbiome and human cancer. Science 371: eabc4552.   DOI
164 Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V, Wargo JA. 2019. The microbiome, cancer, and cancer therapy. Nat. Med. 25: 377-388.   DOI
165 Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027-1031.   DOI
166 Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, et al. 2011. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 108 Suppl 1: 4680-4687.   DOI
167 Brennan CA, Garrett WS. 2016. Gut microbiota, inflammation, and colorectal cancer. Annu. Rev. Microbiol. 70: 395-411.   DOI
168 Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, et al. 2015. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect. Dis. 60: 208-215.   DOI
169 Maruvada P, Leone V, Kaplan LM, Chang EB. 2017. The human microbiome and obesity: moving beyond associations. Cell Host Microbe. 22: 589-599.   DOI
170 Reddy BS, Weisburger JH, Narisawa T, Wynder EL. 1974. Colon carcinogenesis in germ-free rats with 1,2-dimethylhydrazine and N-methyl-n'-nitro-N-nitrosoguanidine. Cancer Res. 34: 2368-2372.
171 Tomkovich S, Yang Y, Winglee K, Gauthier J, Muhlbauer M, Sun X, et al. 2017. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res. 77: 2620-2632.
172 Mangerich A, Knutson CG, Parry NM, Muthupalani S, Ye W, Prestwich E, et al. 2012. Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer. Proc. Natl. Acad. Sci. USA 109: E1820-1829.
173 Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, et al. 2015. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42: 344-355.   DOI
174 Dalmasso G, Cougnoux A, Delmas J, Darfeuille-Michaud A, Bonnet R. 2014. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes 5: 675-680.   DOI
175 Uribe-Herranz M, Rafail S, Beghi S, Gil-de-Gomez L, Verginadis I, Bittinger K, et al. 2020. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J. Clin. Invest. 130: 466-479.   DOI
176 Zhang D, Chen G, Manwani D, Mortha A, Xu C, Faith JJ, et al. 2015. Neutrophil ageing is regulated by the microbiome. Nature 525: 528-532.   DOI