Browse > Article
http://dx.doi.org/10.4014/jmb.2112.12035

Immunoenhancing Effects of Euglena gracilis on a Cyclophosphamide-Induced Immunosuppressive Mouse Model  

Yang, Hyeonji (Department of Food Science and Technology, Seoul National University of Science and Technology)
Choi, Kwanyong (Department of Food Science and Technology, Seoul National University of Science and Technology)
Kim, Kyeong Jin (Department of Nano Bio Engineering, Seoul National University of Science and Technology)
Park, Soo-yeon (Lab of Nanobio, Seoul National University of Science and Technology)
Jeon, Jin-Young (BIO R&D center, Daesang Corp.)
Kim, Byung-Gon (BIO R&D center, Daesang Corp.)
Kim, Ji Yeon (Department of Food Science and Technology, Seoul National University of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.2, 2022 , pp. 228-237 More about this Journal
Abstract
In this study, the effects of the immune stimulator Euglena gracilis (Euglena) in cyclophosphamide (CCP)-induced immunocompromised mice were assessed. The key component β-1,3-glucan (paramylon) constitutes 50% of E. gracilis. Mice were orally administered Euglena powder (250 and 500 mg/kg body weight (B.W.)) or β-glucan powder (250 mg/kg B.W.) for 19 days. In a preliminary immunology experiment, ICR mice were intraperitoneally injected with 80 mg of CCP/kg B.W. during the final 3 consecutive days. In the main experiment, BALB/c mice were treated with CCP for the final 5 days. To evaluate the enhancing effects of Euglena on the immune system, mouse B.W., the spleen index, natural killer (NK) cell activity and mRNA expression in splenocytes lungs and livers were determined. To detect cytokine and receptor expression, splenocytes were treated with 5 ㎍/ml concanavalin A or 1 ㎍/ml lipopolysaccharide. The B.W. and spleen index were significantly increased and NK cell activity was slightly enhanced in all the experimental groups compared to the CCP-only group. In splenocytes, the gene expression levels of tumor necrosis factor-α, interferon-γ, interleukin (IL)-10, IL-6, and IL-12 receptor were increased in the E. gracilis and β-glucan groups compared to the CCP-only group, but there was no significant difference. Treatment with 500 mg of Euglena/kg B.W. significantly upregulated dectin-1 mRNA expression in the lung and liver compared to the CCP-only group. These results suggest that Euglena may enhance the immune system by strengthening innate immunity through immunosuppression.
Keywords
Immune enhancement; cyclophosphamide; Euglena gracilis; ${\beta}$-glucan; splenocytes; dectin-1;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Bastian D, Wu Y, Betts BC, Yu XZ. 2019. The IL-12 Cytokine and receptor family in graft-vs.-host disease. Front. Immunol. 10: 988.   DOI
2 Presky DH, Yang H, Minetti LJ, Chua AO, Nabavi N, Wu CY, et al. 1996. A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc. Natl. Acad. Sci. USA 93: 14002-14007.   DOI
3 Sakanoi Y, Shuang E, Yamamoto K, Ota T, Seki K, Imai M, et al. 2018. Simultaneous intake of Euglena Gracilis and vegetables synergistically exerts an anti-inflammatory effect and attenuates visceral fat accumulation by affecting gut microbiota in mice. Nutrients 10: 1417.   DOI
4 Pelanda R, Torres RM. 2012. Central B-cell tolerance: where selection begins. Cold Spring Harb Perspect. Biol. 4: a007146.   DOI
5 Wu C, Wang X, Gadina M, O'Shea JJ, Presky DH, Magram J. 2000. IL-12 receptor beta 2 (IL-12R beta 2)-deficient mice are defective in IL-12-mediated signaling despite the presence of high affinity IL-12 binding sites. J. Immunol. 165: 6221-6228.   DOI
6 Goodridge HS, Wolf AJ, Underhill DM. 2009. Beta-glucan recognition by the innate immune system. Immunol. Rev. 230: 38-50.   DOI
7 Brown GD, Gordon S. 2001. Immune recognition. A new receptor for beta-glucans. Nature 413: 36-37.   DOI
8 Aoe S, Yamanaka C, Koketsu K, Nishioka M, Onaka N, Nishida N, et al. 2019. Effects of paramylon extracted from Euglena gracilis EOD-1 on parameters related to metabolic syndrome in diet-induced obese mice. Nutrients 11: 1674.   DOI
9 Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, et al. 2005. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22: 507-517.   DOI
10 De Marco Castro E, Calder PC, Roche HM. 2021. beta-1,3/1,6-Glucans and immunity: state of the art and future directions. Mol. Nutr. Food Res. 65: e1901071.
11 Nakashima A, Suzuki K, Asayama Y, Konno M, Saito K, Yamazaki N, et al. 2017. Oral administration of Euglena gracilis Z and its carbohydrate storage substance provides survival protection against influenza virus infection in mice. Biochem. Biophys. Res. Commun. 494: 379-383.   DOI
12 Kim KJ, Paik HD, Kim JY. 2021. Immune-enhancing effects of Lactobacillus plantarum 200655 isolated from Korean kimchi in a cyclophosphamide-induced immunocompromised mouse model. J. Microbiol. Biotechnol. 31: 726-732.   DOI
13 Shin JS, Chung SH, Lee WS, Lee JY, Kim JL, Lee KT. 2018. Immunostimulatory effects of cordycepin-enriched WIB-801CE from Cordyceps militaris in splenocytes and cyclophosphamide-induced immunosuppressed mice. Phytother. Res. 32: 132-139.   DOI
14 Hammer Q, Ruckert T, Romagnani C. 2018. Natural killer cell specificity for viral infections. Nat. Immunol. 19: 800-808.   DOI
15 Monfils AK, Triemer RE, Bellairs EF. 2011. Characterization of paramylon morphological diversity in photosynthetic euglenoids (Euglenales, Euglenophyta). Phycologia 50: 156-169.   DOI
16 Buetow DE, Gilbert CW. 1982. Polypeptide composition of thylakoid membranes: two-dimensional gel analysis during development of Euglena chloroplasts. Prog. Clin. Biol. Res. 102 Pt B: 139-148.
17 Russo R, Barsanti L, Evangelista V, Frassanito AM, Longo V, Pucci L, et al. 2017. Euglena gracilis paramylon activates human lymphocytes by upregulating pro-inflammatory factors. Food Sci. Nutr. 5: 205-214.   DOI
18 Okouchi R, E S, Yamamoto K, Ota T, Seki K, Imai M, et al. 2019. Simultaneous intake of Euglena gracilis and vegetables exerts synergistic anti-obesity and anti-inflammatory effects by modulating the gut microbiota in diet-induced obese mice. Nutrients. 11: 204.   DOI
19 Barsanti L, Gualtieri P. 2019. Paramylon, a potent immunomodulator from WZSL mutant of Euglena gracilis. Molecules 24: 3114.   DOI
20 Calvayrac R, Laval-Martin D, Briand J, Farineau J. 1981. Paramylon synthesis by Euglena gracilis photoheterotrophically grown under low O2 pressure : Description of a mitochloroplast complex. Planta 153: 6-13.   DOI
21 Li X, Luo H, Ye Y, Chen X, Zou Y, Duan J, et al. 2019. betaglucan, a dectin1 ligand, promotes macrophage M1 polarization via NFkappaB/autophagy pathway. Int. J. Oncol. 54: 271-282.
22 Chijioke O, Munz C. 2013. Dendritic cell derived cytokines in human natural killer cell differentiation and activation. Front. Immunol. 4: 365.   DOI
23 Lei M, Wang J, Wang Y, Pang L, Wang Y, Xu W, et al. 2007. Study of the radio-protective effect of cuttlefish ink on hemopoietic injury. Asia Pac. J. Clin. Nutr. 16 Suppl 1: 239-243.
24 Sarangi I, Ghosh D, Bhutia SK, Mallick SK, Maiti TK. 2006. Anti-tumor and immunomodulating effects of Pleurotus ostreatus mycelia-derived proteoglycans. Int. Immunopharmacol. 6: 1287-1297.   DOI
25 Cerwenka A, Lanier LL. 2016. Natural killer cell memory in infection, inflammation and cancer. Nat. Rev. Immunol. 16: 112-123.   DOI
26 Pearce EJ, Everts B. 2015. Dendritic cell metabolism. Nat. Rev. Immunol. 15: 18-29.   DOI
27 Hile G, Kahlenberg JM, Gudjonsson JE. 2020. Recent genetic advances in innate immunity of psoriatic arthritis. Clin. Immunol. 214: 108405.   DOI
28 Ding J, Ning Y, Bai Y, Xu X, Sun X, Qi C. 2019. β-Glucan induces autophagy in dendritic cells and influences T-cell differentiation. Med. Microbiol. Immunol. 208: 39-48.   DOI
29 Kurowska-Stolarska M, Alivernini S. 2017. Synovial tissue macrophages: friend or foe? RMD Open 3: e000527.   DOI
30 O'Leary JG, Goodarzi M, Drayton DL, von Andrian UH. 2006. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 7: 507-516.   DOI
31 Shokryazdan P, Faseleh Jahromi M, Navidshad B, Liang JB. 2017. Effects of prebiotics on immune system and cytokine expression. Med. Microbiol. Immunol. 206: 1-9.   DOI
32 Bedke T, Muscate F, Soukou S, Gagliani N, Huber S. 2019. Title: IL-10-producing T cells and their dual functions. Semin. Immunol. 44: 101335.   DOI
33 Mao GH, Ren Y, Li Q, Wu HY, Jin D, Zhao T, et al. 2016. Anti-tumor and immunomodulatory activity of selenium (Se)-polysaccharide from Se-enriched Grifola frondosa. Int. J. Biol. Macromol. 82: 607-613.   DOI
34 Monmai C, You S, Park WJ. 2019. Immune-enhancing effects of anionic macromolecules extracted from Codium fragile on cyclophosphamide-treated mice. PLoS One 14: e0211570.   DOI
35 Zitvogel L, Terme M, Borg C, Trinchieri G. 2006. Dendritic cell-NK cell cross-talk: regulation and physiopathology. Curr. Top. Microbiol. Immunol. 298: 157-174.
36 Akrami M, Menzies R, Chamoto K, Miyajima M, Suzuki R, Sato H, et al. 2020. Circulation of gut-preactivated naive CD8(+) T cells enhances antitumor immunity in B cell-defective mice. Proc. Natl. Acad. Sci. USA 117: 23674-23683.   DOI
37 Zhang J, Zheng H, Diao Y. 2019. Natural killer cells and current applications of chimeric antigen receptor-modified NK-92 cells in tumor immunotherapy. Int. J. Mol. Sci. 20: 317.   DOI
38 Park H-E, Lee W-K. 2018. Immune enhancing effects of Weissella cibaria JW15 on BALB/c mice immunosuppressed by cyclophosphamide. J. Funct. Foods 49: 518-525.   DOI
39 Guo Q, Bi D, Wu M, Yu B, Hu L, Liu C, et al. 2020. Immune activation of murine RAW264.7 macrophages by sonicated and alkalized paramylon from Euglena gracilis. BMC Microbiol. 20: 171.   DOI
40 Xin G, Zander R, Schauder DM, Chen Y, Weinstein JS, Drobyski WR, et al. 2018. Single-cell RNA sequencing unveils an IL-10-producing helper subset that sustains humoral immunity during persistent infection. Nat. Commun. 9: 5037.   DOI
41 Kalia N, Singh J, Kaur M. 2021. The role of dectin-1 in health and disease. Immunobiology 226: 152071.   DOI
42 Lori A, Perrotta M, Lembo G, Carnevale D. 2017. The spleen: a hub connecting nervous and immune systems in cardiovascular and metabolic diseases. Int. J. Mol. Sci. 18: 1216.   DOI
43 Muller US, Wirth W, Junge-Hulsing G, Hauss WH. 1973. [Suppressive effects in mesenchyme and immunosuppressive effects of cytostatica]. Int. J. Clin. Pharmacol. 7: 228-233.
44 Li W, Hu X, Wang S, Jiao Z, Sun T, Liu T, et al. 2020. Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation. Int. J. Biol. Macromol. 145: 985-997.   DOI
45 Han J, Xia J, Zhang L, Cai E, Zhao Y, Fei X, et al. 2019. Studies of the effects and mechanisms of ginsenoside Re and Rk3 on myelosuppression induced by cyclophosphamide. J. Ginseng Res. 43: 618-624.   DOI
46 Kak G, Raza M, Tiwari BK. 2018. Interferon-gamma (IFN-gamma): exploring its implications in infectious diseases. Biomol. Concepts 9: 64-79.   DOI
47 Wahyuningsih SPA, Pramudya M, Putri IP, Winarni D, Savira NII, Darmanto W. 2018. Crude polysaccharides from okra pods (Abelmoschus esculentus) grown in Indonesia enhance the immune response due to bacterial infection. Adv. Pharmacol. Sci. 2018: 8505383.
48 Pech MF, Fong LE, Villalta JE, Chan LJ, Kharbanda S, O'Brien JJ, et al. 2019. Systematic identification of cancer cell vulnerabilities to natural killer cell-mediated immune surveillance. Elife 8: e47362.   DOI
49 Ferlazzo G, Munz C. 2004. NK cell compartments and their activation by dendritic cells. J. Immunol. 172: 1333-1339.   DOI
50 Bald T, Pedde AM, Corvino D, Bottcher JP. 2020. The role of NK cell as central communicators in cancer immunity. Adv. Immunol. 147: 61-88.   DOI
51 Kumar BV, Connors TJ, Farber DL. 2018. Human T Cell development, localization, and function throughout life. Immunity 48: 202-213.   DOI
52 Willment JA, Marshall AS, Reid DM, Williams DL, Wong SY, Gordon S, et al. 2005. The human beta-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur. J. Immunol. 35: 1539-1547.   DOI
53 Liu X, Zhang Z, Liu J, Wang Y, Zhou Q, Wang S, et al. 2019. Ginsenoside Rg3 improves cyclophosphamide-induced immunocompetence in Balb/c mice. Int. Immunopharmacol. 72: 98-111.   DOI
54 Barnes H, Holland AE, Westall GP, Goh NS, Glaspole IN. 2018. Cyclophosphamide for connective tissue disease-associated interstitial lung disease. Cochrane Database Syst. Rev. 1: CD010908.
55 Ahlmann M, Hempel G. 2016. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother. Pharmacol. 78: 661-671.   DOI
56 Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez-Pomares L, et al. 2002. Dectin-1 is a major beta-glucan receptor on macrophages. J. Exp. Med. 196: 407-412.   DOI
57 Inoue M, Okinaga T, Usui M, Kawano A, Thongsiri C, Nakashima K, et al. 2019. β-glucan suppresses cell death of ASC deficient macrophages invaded by periodontopathic bacteria through the caspase-11 pathway. FEMS Microbiol. Lett. 366: fnz093.   DOI
58 Herre J, Gordon S, Brown GD. 2004. Dectin-1 and its role in the recognition of beta-glucans by macrophages. Mol. Immunol. 40: 869-876.   DOI
59 Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L, Gordon S, et al. 2002. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol. 169: 3876-3882.   DOI
60 Lee YJ, Paik DJ, Kwon DY, Yang HJ, Park Y. 2017. Agrobacterium sp.-derived beta-1,3-glucan enhances natural killer cell activity in healthy adults: a randomized, double-blind, placebo-controlled, parallel-group study. Nutr. Res. Pract. 11: 43-50.   DOI
61 Jansen JM, Gerlach T, Elbahesh H, Rimmelzwaan GF, Saletti G. 2019. Influenza virus-specific CD4+ and CD8+ T cell-mediated immunity induced by infection and vaccination. J. Clin. Virol. 119: 44-52.   DOI
62 Fischer U, Yang JJ, Ikawa T, Hein D, Vicente-Duenas C, Borkhardt A, et al. 2020. Cell fate decisions: The role of transcription factors in early B-cell development and leukemia. Blood Cancer Discov. 1: 224-233.   DOI
63 Brown GD, Gordon S. 2001. A new receptor for β-glucans. Nature 413: 36-37.   DOI
64 Foulds KE, Rotte MJ, Seder RA. 2006. IL-10 is required for optimal CD8 T cell memory following Listeria monocytogenes infection. J. Immunol. 177: 2565-2574.   DOI
65 Mumm JB, Emmerich J, Zhang X, Chan I, Wu L, Mauze S, et al. 2011. IL-10 elicits IFNgamma-dependent tumor immune surveillance. Cancer Cell 20: 781-796.   DOI
66 Fujii S, Shimizu K, Shimizu T, Lotze MT. 2001. Interleukin-10 promotes the maintenance of antitumor CD8(+) T-cell effector function in situ. Blood 98: 2143-2151.   DOI
67 Huysamen C, Brown GD. 2009. The fungal pattern recognition receptor, Dectin-1, and the associated cluster of C-type lectin-like receptors. FEMS Microbiol. Lett. 290: 121-128.   DOI
68 Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM. 2003. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J. Exp. Med. 197: 1107-1117.   DOI
69 Raphael I, Nalawade S, Eagar TN, Forsthuber TG. 2015. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74: 5-17.   DOI
70 Kondo M. 2010. Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. Immunol. Rev. 238: 37-46.   DOI
71 Chyuan IT, Lai JH. 2020. New insights into the IL-12 and IL-23: from a molecular basis to clinical application in immune-mediated inflammation and cancers. Biochem. Pharmacol. 175: 113928.   DOI
72 Vignali DA, Kuchroo VK. 2012. IL-12 family cytokines: immunological playmakers. Nat. Immunol. 13: 722-728.   DOI
73 Campbell KS, Hasegawa J. 2013. Natural killer cell biology: an update and future directions. J. Allergy Clin. Immunol. 132: 536-544.   DOI
74 Levy Y, Brouet JC. 1994. Interleukin-10 prevents spontaneous death of germinal center B cells by induction of the bcl-2 protein. J. Clin. Invest. 93: 424-428.   DOI
75 Phillips FC, Jensen GS, Showman L, Tonda R, Horst G, Levine R. 2019. Particulate and solubilized beta-glucan and non-beta-glucan fractions of Euglena gracilis induce pro-and anti-inflammatory innate immune cell responses and exhibit antioxidant properties. J. Inflamm. Res. 12: 49-64.   DOI
76 Matsumoto T, Inui H, Miyatake K, Nakano Y, Murakami K. 2009. Comparison of Nutrients in Euglena with those in other representative food sources. Eco-Eng. 21: 81-86.
77 Ishibashi KI, Nishioka M, Onaka N, Takahashi M, Yamanaka D, Adachi Y, et al. 2019. Effects of Euglena gracilis EOD-1 ingestion on salivary IgA reactivity and health-related quality of life in humans. Nutrients 11: 1144.   DOI
78 Muller US, Wirth W, Thone F, Junge-Hulsing G, Hauss WH. 1973. [Animal experiments on the anti-inflammatory and immunosuppressive effect of cytostatic agents]. Arzneimittelforschung 23: 487-491.
79 Talmadge JE, Meyers KM, Prieur DJ, Starkey JR. 1980. Role of NK cells in tumour growth and metastasis in beige mice. Nature 284: 622-624.   DOI
80 Paul S, Lal G. 2017. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front. Immunol. 8: 1124.   DOI
81 Capellino S, Claus M, Watzl C. 2020. Regulation of natural killer cell activity by glucocorticoids, serotonin, dopamine, and epinephrine. Cell. Mol. Immunol. 17: 705-711.   DOI
82 Yasuda K, Nakashima A, Murata A, Suzuki K, Adachi T. 2020. Euglena Gracilis and beta-Glucan Paramylon Induce Ca(2+) signaling in intestinal tract epithelial, immune, and neural cells. Nutrients 12: 2293.   DOI
83 Aemiro A, Watanabe S, Suzuki K, Hanada M, Umetsu K, Nishida T. 2016. Effects of Euglena (Euglena gracilis) supplemented to diet (forage: concentrate ratios of 60:40) on the basic ruminal fermentation and methane emissions in in vitro condition. Anim. Feed Sci. Technol. 212: 129-135.   DOI
84 Fehniger TA, Shah MH, Turner MJ, VanDeusen JB, Whitman SP, Cooper MA, et al. 1999. Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: implications for the innate immune response. J. Immunol. 162: 4511-4520.
85 Nakashima A, Sugimoto R, Suzuki K, Shirakata Y, Hashiguchi T, Yoshida C, et al. 2019. Anti-fibrotic activity of Euglena gracilis and paramylon in a mouse model of non-alcoholic steatohepatitis. Food Sci. Nutr. 7: 139-147.   DOI
86 Shimada R, Fujita M, Yuasa M, Sawamura H, Watanabe T, Nakashima A, et al. 2016. Oral administration of green algae, Euglena gracilis, inhibits hyperglycemia in OLETF rats, a model of spontaneous type 2 diabetes. Food Funct. 7: 4655-4659.   DOI