Browse > Article
http://dx.doi.org/10.4014/jmb.2209.09012

Biotechnological Approaches for Biomass and Lipid Production Using Microalgae Chlorella and Its Future Perspectives  

Sujeong Je (Division of Biotechnology, The Catholic University of Korea)
Yasuyo Yamaoka (Division of Biotechnology, The Catholic University of Korea)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.11, 2022 , pp. 1357-1372 More about this Journal
Abstract
Heavy reliance on fossil fuels has been associated with increased climate disasters. As an alternative, microalgae have been proposed as an effective agent for biomass production. Several advantages of microalgae include faster growth, usage of non-arable land, recovery of nutrients from wastewater, efficient CO2 capture, and high amount of biomolecules that are valuable for humans. Microalgae Chlorella spp. are a large group of eukaryotic, photosynthetic, unicellular microorganisms with high adaptability to environmental variations. Over the past decades, Chlorella has been used for the large-scale production of biomass. In addition, Chlorella has been actively used in various food industries for improving human health because of its antioxidant, antidiabetic, and immunomodulatory functions. However, the major restrictions in microalgal biofuel technology are the cost-consuming cultivation, processing, and lipid extraction processes. Therefore, various trials have been performed to enhance the biomass productivity and the lipid contents of Chlorella cells. This study provides a comprehensive review of lipid enhancement strategies mainly published in the last five years and aimed at regulating carbon sources, nutrients, stresses, and expression of exogenous genes to improve biomass production and lipid synthesis.
Keywords
Chlorella; biotechnology; lipids; microalgae; biomass; phycoremediation;
Citations & Related Records
Times Cited By KSCI : 22  (Citation Analysis)
연도 인용수 순위
1 West MA, Yee KM, Danao J, Zimmerman JL, Fischer RL, Goldberg RB, et al. 1994. Leafy Cotyledon1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6: 1731-1745.   DOI
2 Liu X, Zhang D, Zhang J, Chen Y, Liu X, Fan C, et al. 2021. Overexpression of the transcription factor AtLEC1 significantly improved the lipid content of Chlorella ellipsoidea. Front. Bioeng. Biotechnol. 9: 626162.
3 Tokunaga S, Sanda S, Uraguchi Y, Nakagawa S, Sawayama S. 2019. Overexpression of the DOF-type transcription factor enhances lipid synthesis in Chlorella vulgaris. Appl. Biochem. Biotechnol. 189: 116-128.   DOI
4 Davy R. 2009. Development of catalysts for fast, energy efficient post combustion capture of CO2 into water; an alternative to monoethanolamine (MEA) solvents. Energy Procedia 1: 885-892.   DOI
5 You SK, Ko YJ, Shin SK, Hwang D-h, Kang DH, Park HM, et al. 2020. Enhanced CO2 fixation and lipid production of Chlorella vulgaris through the carbonic anhydrase complex. Bioresour. Technol. 318: 124072.
6 Research and Markets.Chlorella Market by Technology, by Product Type by Source by Application, Geography - Global Forecast to 2028. Research and Markets. 2021. Avaliable online: https://www.researchandmarkets.com/reports/5438311/chlorella-market-bytechnology-by-product-type"
7 Future Market Insights. Chlorella Market. Future Market Insights. 2022. Avaliable online: https://www.futuremarketinsights.com/ reports/chlorella-market
8 Research Reportsword. Global Chlorella Market Research Report 2022 (Status and Outlook). Research Reportsword. 2022. Avaliable online: https://researchreportsworld.com/global-chlorella-market-21185328
9 Maximize Market Research. Chlorella Market- Global Industry Analysis and Forecast (2022-2029). Maximize Market Research. 2022. Avaliable online: https://www.maximizemarketresearch.com/market-report/chlorella-market/147101/
10 Cottin SC, Sanders TA, Hall WL. 2011. The differential effects of EPA and DHA on cardiovascular risk factors. Proc. Nutr. Soc. 70: 215-231.   DOI
11 Eslick GD, Howe PR, Smith C, Priest R, Bensoussan A. 2009. Benefits of fish oil supplementation in hyperlipidemia: a systematic review and meta-analysis. Int .J. Cardiol. 136: 4-16.   DOI
12 Matos AP, Ferreira WB, de Oliveira Torres RC, Morioka LRI, Canella MHM, Rotta J, et al. 2015. Optimization of biomass production of Chlorella vulgaris grown in desalination concentrate. J. Appl. Phycol. 27: 1473-1483.   DOI
13 Toumi A, Politaeva N, durovic S, Mukhametova L, Ilyashenko S. 2022. Obtaining DHA-EPA oil concentrates from the biomass of microalga Chlorella sorokiniana. Resources 11: 20.
14 Khalid M, Saeed ur R, Bilal M, Huang D-f. 2019. Role of flavonoids in plant interactions with the environment and against human pathogens - A review. J. Integr. Agric. 18: 211-230.   DOI
15 Pagliuso D, Palacios Jara CE, Grandis A, Lam E, Pena Ferreira MJ, Buckeridge MS. 2020. Flavonoids from duckweeds: potential applications in the human diet. RSC Adv. 10: 44981-44988.   DOI
16 Yadavalli R, Ratnapuram H, Motamarry S, Reddy CN, Ashokkumar V, Kuppam C. 2020. Simultaneous production of flavonoids and lipids from Chlorella vulgaris and Chlorella pyrenoidosa. Biomass Convers. Biorefin. 12: 683-691.
17 Mohamad MF, Dailin DJ, Gomaa SE, Nurjayadi M, Enshasy H. 2019. Natural colorant for food: a healthy alternative. Int. J. Sci. Technol. Res. 8: 3161-3166.
18 Romero N, Visentini FF, Marquez VE, Santiago LG, Castro GR, Gagneten AM. 2020. Physiological and morphological responses of green microalgae Chlorella vulgaris to silver nanoparticles. Environ. Res. 189: 109857.
19 Wang S, Chen Y-k, Ghonimy A, Yu T, Gao Y-s, Wu Z-c, et al. 2020. L-Carnitine supplementation improved population growth, photosynthetic pigment synthesis and antioxidant activity of marine Chlorella sp. Aquac. Rep. 17: 100394.
20 Morales M, Helias A, Bernard O. 2019. Optimal integration of microalgae production with photovoltaic panels: environmental impacts and energy balance. Biotechnol. Biofuels 12: 239-255.   DOI
21 Fakhri M, Riyani E, Ekawati AW, Arifin NB, Yuniarti A, Widyawati Y, et al. 2021. Biomass, pigment production, and nutrient uptake of Chlorella sp. under different photoperiods. Biodivers. J. Biol. Diversity 22: 5344-5349.
22 Liu X-y, Hong Y, Gu W-p. 2021. Influence of light quality on Chlorella growth, photosynthetic pigments and high-valued products accumulation in coastal saline-alkali leachate. J. Water Reuse Desalin. 11: 301-311.   DOI
23 Cai Y, Liu Y, Liu T, Gao K, Zhang Q, Cao L, et al. 2021. Heterotrophic cultivation of Chlorella vulgaris using broken rice hydrolysate as carbon source for biomass and pigment production. Bioresour. Technol. 323: 124607.
24 Botella-Pavia P, Rodriguez-Concepcion M. 2006. Carotenoid biotechnology in plants for nutritionally improved foods. Physiol. Plant. 126: 369-381.   DOI
25 Lu S, Li L. 2008. Carotenoid metabolism: biosynthesis, regulation, and beyond. J. Integr. Plant Biol. 50: 778-785.   DOI
26 Fernandez-Linares LC, Barajas CG, Paramo ED, Corona JAB. 2017. Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium. Bioresour. Technol. 244: 400-406.   DOI
27 Fabryova T, Cheel J, Kuba? D, Hrouzek P, Vu DL, T?mova L, et al. 2019. Purification of lutein from the green microalgae Chlorella vulgaris by integrated use of a new extraction protocol and a multi-injection high performance counter-current chromatography (HPCCC). Algal Res. 41: 101574.
28 Sun Z, Zhang Y, Sun L-p, Liu J. 2019. Light elicits astaxanthin biosynthesis and accumulation in the fermented ultrahigh-density Chlorella zofinginesis. J. Agric. Food Chem. 67: 5579-5586.   DOI
29 Ahmad N, Mounsef JR, Lteif R. 2021. A simple and fast experimental protocol for the extraction of xanthophylls from microalga Chlorella luteoviridis. Prep. Biochem. Biotechnol. 51: 1071-1075.   DOI
30 Tan CH, Nagarajan D, Show PL, Chang J-S. 2019. Biodiesel from microalgae, pp. 601-628. Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, Ed. Elsevier,
31 Chen Y, Xu C, Vaidyanathan S. 2020. Influence of gas management on biochemical conversion of CO2 by microalgae for biofuel production. Appl. Energy 261: 114420.
32 Cooney M, Young G, Nagle N. 2009. Extraction of bio-oils from microalgae. Sep. Purif. Rev. 38: 291-325.   DOI
33 Sajjadi B, Chen W-Y, Raman AAA, Ibrahim S. 2018. Microalgae lipid and biomass for biofuel production: a comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renewable Sustainable Energy Rev. 97: 200-232.   DOI
34 Jonker JGG, Faaij APC. 2013. Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production. Appl. Energy 102: 461-475.   DOI
35 Debowski M, Zielinski M, Kazimierowicz J, Kujawska N, Talbierz S. 2020. Microalgae cultivation technologies as an opportunity for bioenergetic system development-advantages and limitations. Sustainability 12: 9980.
36 Dassey A, Theegala C. 2013. Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour. Technol. 128: 241-245.   DOI
37 Farooq W, Lee Y-C, Han J-I, Darpito CH, Choi M, Yang J-W. 2013. Efficient microalgae harvesting by organo-building blocks of nanoclays. Green Chem. 15: 749-755.   DOI
38 Bock C, Krienitz L, Proeschold T. 2011. Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea 11: 293-312.   DOI
39 Yamamoto M, Fujishita M, Hirata A, Kawano S. 2004. Regeneration and maturation of daughter cell walls in the autospore-forming green alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae). J. Plant Resr. 117: 257-264.
40 Morimura Y, Tamiya N. 1954. Preliminary experiments in the use of Chlorella as human food. Food Technol. 8: 179-182.
41 Fernandes AS, Nascimento TC, Pinheiro PN, Vendruscolo RG, Wagner R, de Rosso VV, et al. 2021. Bioaccessibility of microalgaebased carotenoids and their association with the lipid matrix. Food Res. Int. 148: 110596.
42 Baidya A, Akter T, Islam MR, Shah AKMA, Hossain MA, Salam MA, et al. 2021. Effect of different wavelengths of LED light on the growth, chlorophyll, β-carotene content and proximate composition of Chlorella ellipsoidea. Heliyon 7: e08525.
43 Andrade L, Andrade C, Dias M, Nascimento C, Mendes M. 2018. Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Process. Technol. 6: 00144.
44 Jalilian N, Najafpour G, Khajouei M. 2019. Enhanced vitamin B12 production using Chlorella vulgaris. Int. J. Eng. 32: 1-9.
45 Mtaki K, Kyewalyanga MS, Mtolera MS. 2021. Supplementing wastewater with NPK fertilizer as a cheap source of nutrients in cultivating live food (Chlorella vulgaris). Annal. Microbiol. 71: 1-13.   DOI
46 Prabakaran G, Moovendhan M, Arumugam A, Matharasi A, Dineshkumar R, Sampathkumar P. 2019. Evaluation of chemical composition and in vitro antiinflammatory effect of marine microalgae Chlorella vulgaris. Waste Biomass Valori. 10: 3263-3270.   DOI
47 Yu M, Chen M, Gui J, Huang S, Liu Y, Shentu H, et al. 2019. Preparation of Chlorella vulgaris polysaccharides and their antioxidant activity in vitro and in vivo. Int. J. Biol. Macromol. 137: 139-150.   DOI
48 Shibata S, Natori Y, Nishihara T, Tomisaka K, Matsumoto K, Sansawa H, et al. 2003. Antioxidant and anti-cataract effects of Chlorella on rats with streptozotocin-induced diabetes. J. Nutr. Sci. Vitaminol. 49: 334-339.   DOI
49 Hsu H-Y, Jeyashoke N, Yeh C-H, Song Y-J, Hua K-F, Chao LK. 2010. Immunostimulatory bioactivity of algal polysaccharides from Chlorella pyrenoidosa activates macrophages via Toll-like receptor 4. J. Agric. Food Chem. 58: 927-936.   DOI
50 Sansawa H, Takahashi M, Tsuchikura S, Endo H. 2006. Effect of Chlorella and its fractions on blood pressure, cerebral stroke lesions, and life-span in stroke-prone spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol. 52: 457-466.   DOI
51 Nawkarkar P, Singh AK, Abdin MZ, Kumar S. 2019. Life cycle assessment of Chlorella species producing biodiesel and remediating wastewater. J. Biosci. 44: 89.
52 Harder R, von Witsch H. 1942. Weitere Untersuchungen uber die Veranderung der photoperiodischen Reaktion von Kalanchoe Blossfeldiana mit zunehmendem Alter der Pflanzen. Planta 32: 547-557.   DOI
53 Cai T, Park SY, Li Y. 2013. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable Sustainable Energy Rev. 19: 360-369.   DOI
54 Asadi P, Rad HA, Qaderi F. 2019. Comparison of Chlorella vulgaris and Chlorella sorokiniana pa. 91 in post treatment of dairy wastewater treatment plant effluents. Environ. Sci. Pollut. Res. 26: 29473-29489.   DOI
55 Barsanti L, Gualtieri P. 2018. Is exploitation of microalgae economically and energetically sustainable? Algal Res. 31: 107-115.   DOI
56 Cui Y, Thomas-Hall SR, Schenk PM. 2019. Phaeodactylum tricornutum microalgae as a rich source of omega-3 oil: progress in lipid induction techniques towards industry adoption. Food Chem. 297: 124937.
57 Shrestha N, Dandinpet KK, Schneegurt MA. 2020. Effects of nitrogen and phosphorus limitation on lipid accumulation by Chlorella kessleri str. UTEX 263 grown in darkness. J. Appl. Phycol. 32: 2795-2805.   DOI
58 Liu T, Chen Z, Xiao Y, Yuan M, Zhou C, Liu G, et al. 2022. Biochemical and morphological changes triggered by nitrogen stress in the oleaginous microalga Chlorella vulgaris. Microorganisms 10: 566-581.   DOI
59 Almutairi AW, El-Sayed AE-KB, Reda MM. 2021. Evaluation of high salinity adaptation for lipid bio-accumulation in the green microalga Chlorella vulgaris. Saudi J. Biol. Sci. 28: 3981-3988.   DOI
60 Jiang L, Zhang L, Nie C, Pei H. 2018. Lipid productivity in limnetic Chlorella is doubled by seawater added with anaerobically digested effluent from kitchen waste. Biotechnol. Biofuels 11: 68.
61 Wang F, Liu T, Guan W, Xu L, Huo S, Ma A, et al. 2021. Development of a Strategy for Enhancing the Biomass Growth and Lipid Accumulation of Chlorella sp. UJ-3 Using Magnetic Fe3O4 Nanoparticles. Nanomaterials 11: 2802.
62 Mizoguchi T, Takehara I, Masuzawa T, Saito T, Naoki Y. 2008. Nutrigenomic studies of effects of Chlorella on subjects with high-risk factors for lifestyle-related disease. J. Med. Food. 11: 395-404.   DOI
63 Otsuki T, Shimizu K, Iemitsu M, Kono I. 2013. Multicomponent supplement containing Chlorella decreases arterial stiffness in healthy young men. J. Clin. Biochem. Nutr. 53: 166-169.   DOI
64 Otsuki T, Shimizu K, Maeda S. 2015. Changes in arterial stiffness and nitric oxide production with Chlorella-derived multicomponent supplementation in middle-aged and older individuals. J. Clin. Biochem. Nutr. 57: 228-232.   DOI
65 Nishimoto Y, Nomaguchi T, Mori Y, Ito M, Nakamura Y, Fujishima M, et al. 2021. The nutritional efficacy of Chlorella supplementation depends on the individual gut environment: a randomised control study. Front. Nutr. 8: 270.
66 Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK. 2013. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One 8: e55387.
67 Das SK, Sathish A, Stanley J. 2018. Production of biofuel and bioplastic from Chlorella pyrenoidosa. Mater. Today: Proc. 5: 16774-16781.   DOI
68 Cassuriaga A, Freitas B, Morais M, Costa J. 2018. Innovative polyhydroxybutyrate production by Chlorella fusca grown with pentoses. Bioresour. Technol. 265: 456-463.   DOI
69 Spolaore P, Joannis-Cassan C, Duran E, Isambert A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87-96.   DOI
70 Becker EW. 2007. Micro-algae as a source of protein. Biotechnol. Adv. 25: 207-210.   DOI
71 Van Durme J, Goiris K, De Winne A, De Cooman L, Muylaert K. 2013. Evaluation of the volatile composition and sensory properties of five species of microalgae. J. Agric. Food Chem. 61: 10881-10890.   DOI
72 Coleman B, Van Poucke C, Dewitte B, Ruttens A, Moerdijk-Poortvliet T, Latsos C, et al. 2022. Potential of microalgae as flavoring agents for plant-based seafood alternatives. Future Foods 5: 100139.
73 Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F. 2011. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour. Technol. 102: 106-110.   DOI
74 Yang J, Li X, Hu H, Zhang X, Yu Y, Chen Y. 2011. Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Appl. Energy 88: 3295-3299.   DOI
75 Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH. 2012. The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour. Technol. 124: 217-226.   DOI
76 Wang Y, Rischer H, Eriksen NT, Wiebe MG. 2013. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids. Bioresour. Technol. 144: 608-614.   DOI
77 Amaral MdS, Loures CCA, Naves FL, Baeta B, Silva M, Prata A. 2020. Evaluation of cell growth performance of microalgae Chlorella minutissima using an internal light integrated photobioreactor. J. Environ. Chem. Eng. 8: 104200.
78 Ziganshina EE, Bulynina SS, Ziganshin AM. 2020. Comparison of the photoautotrophic growth regimens of Chlorella sorokiniana in a photobioreactor for enhanced biomass productivity. Biology 9: 169-181.   DOI
79 Jain D, Ghonse SS, Trivedi T, Fernandes GL, Menezes LD, Damare SR, et al. 2019. CO2 fixation and production of biodiesel by Chlorella vulgaris NIOCCV under mixotrophic cultivation. Bioresour. Technol. 273: 672-676.   DOI
80 Singh NK, Naira VR, Maiti SK. 2019. Production of biodiesel by autotrophic Chlorella pyrenoidosa in a sintered disc lab scale bubble column photobioreactor under natural sunlight. Prep. Biochem. Biotechnol. 49: 255-269.   DOI
81 Verma R, Kumari KK, Srivastava A, Kumar A. 2020. Photoautotrophic, mixotrophic, and heterotrophic culture media optimization for enhanced microalgae production. J. Environ. Chem. Eng. 8: 104149.
82 Morowvat MH, Ghasemi Y. 2019. Maximizing biomass and lipid production in heterotrophic culture of Chlorella vulgaris: technoeconomic assessment. Recent Pat. Food Nutr. Agric. 10: 115-123.   DOI
83 Kim HS, Park W-K, Lee B, Seon G, Suh WI, Moon M, et al. 2019. Optimization of heterotrophic cultivation of Chlorella sp. HS2 using screening, statistical assessment, and validation. Sci. Rpe. 9: 19383.
84 Ruiz J, Wijffels RH, Dominguez M, Barbosa MJ. 2022. Heterotrophic vs autotrophic production of microalgae: bringing some light into the everlasting cost controversy. Algal Res. 64: 102698.
85 Perez-Garcia O, Escalante FM, De-Bashan LE, Bashan Y. 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 45: 11-36.   DOI
86 Cheirsilp B, Torpee S. 2012. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol. 110: 510-516.   DOI
87 Sun Y, Liu J, Xie T, Xiong X, Liu W, Liang B, et al. 2014. Enhanced lipid accumulation by Chlorella vulgaris in a two-stage fed-batch culture with glycerol. Energy Fuels 28: 3172-3177.   DOI
88 Azam R, Kothari R, Singh HM, Ahmad S, Sari A, Tyagi V. 2022. Cultivation of two Chlorella species in open sewage contaminated channel wastewater for biomass and biochemical profiles: comparative lab-scale approach. J. Biotechnol. 344: 24-31.   DOI
89 Gao F, Peng Y-Y, Li C, Yang G-J, Deng Y-B, Xue B, et al. 2018. Simultaneous nutrient removal and biomass/lipid production by Chlorella sp. in seafood processing wastewater. Sci. Total Environ. 640: 943-953.
90 Saranya D, Shanthakumar S. 2019. Green microalgae for combined sewage and tannery effluent treatment: performance and lipid accumulation potential. J. Environ. Manag. 241: 167-178.   DOI
91 Huo S, Kong M, Zhu F, Zou B, Wang F, Xu L, et al. 2018. Mixotrophic Chlorella sp. UJ-3 cultivation in the typical anaerobic fermentation effluents. Bioresour. Technol. 249: 219-225.   DOI
92 Xie D, Ji X, Zhou Y, Dai J, He Y, Sun H, et al. 2022. Chlorella vulgaris cultivation in pilot-scale to treat real swine wastewater and mitigate carbon dioxide for sustainable biodiesel production by direct enzymatic transesterification. Bioresour. Technol. 349: 126886.
93 Zhu L-D, Li Z-H, Guo D-B, Huang F, Nugroho Y, Xia K. 2017. Cultivation of Chlorella sp. with livestock waste compost for lipid production. Bioresour. Technol. 223: 296-300.   DOI
94 Farabegoli G, Chiavola A, Rolle E. 2009. The Biological Aerated Filter (BAF) as alternative treatment for domestic sewage. Optimization of plant performance. J. Hazard. Mater. 171: 1126-1132.   DOI
95 Yang Y, Chen Z, Wang X, Zheng L, Gu X. 2017. Partial nitrification performance and mechanism of zeolite biological aerated filter for ammonium wastewater treatment. Bioresour. Technol. 241: 473-481.   DOI
96 Liu L, Zhao Y, Jiang X, Wang X, Liang W. 2018. Lipid accumulation of Chlorella pyrenoidosa under mixotrophic cultivation using acetate and ammonium. Bioresour. Technol. 262: 342-346.   DOI
97 Yun H-S, Kim Y-S, Yoon H-S. 2021. Effect of different cultivation modes (Photoautotrophic, mixotrophic, and heterotrophic) on the growth of Chlorella sp. and biocompositions. Front. Bioeng. Biotechnol. 9: 774143.
98 Ward VC, Rehmann L. 2019. Fast media optimization for mixotrophic cultivation of Chlorella vulgaris. Sci. Rep. 9: 19262.
99 Leon-Vaz A, Leon R, Diaz-Santos E, Vigara J, Raposo S. 2019. Using agro-industrial wastes for mixotrophic growth and lipids production by the green microalga Chlorella sorokiniana. New Biotechnol. 51: 31-38.   DOI
100 Cabanelas ITD, Arbib Z, Chinalia FA, Souza CO, Perales JA, Almeida PF, et al. 2013. From waste to energy: microalgae production in wastewater and glycerol. Appl. Energy 109: 283-290.   DOI
101 Heredia-Arroyo T, Wei W, Ruan R, Hu B. 2011. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 35: 2245-2253.   DOI
102 Rai MP, Nigam S, Sharma R. 2013. Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass Bioenergy 58: 251-257.   DOI
103 Rana MS, Prajapati SK. 2021. Stimulating effects of glycerol on the growth, phycoremediation and biofuel potential of Chlorella pyrenoidosa cultivated in wastewater. Environ. Technol. Innov. 24: 102082.
104 Chai S, Shi J, Huang T, Guo Y, Wei J, Guo M, et al. 2018. Characterization of Chlorella sorokiniana growth properties in monosaccharide-supplemented batch culture. PLoS One 13: e0199873.
105 Yan H, Lu R, Liu Y, Cui X, Wang Y, Yu Z, et al. 2022. Development of microalgae-bacteria symbiosis system for enhanced treatment of biogas slurry. Bioresour. Technol. 354: 127187.
106 Qin L, Wang B, Feng P, Cao Y, Wang Z, Zhu S. 2022. Treatment and resource utilization of dairy liquid digestate by nitrification of biological aerated filter coupled with assimilation of Chlorella pyrenoidosa. Environ. Sci. Pollut. Res. 29: 3406-3416.   DOI
107 Zou Y, Zeng Q, Li H, Liu H, Lu Q. 2021. Emerging technologies of algae-based wastewater remediation for bio-fertilizer production: a promising pathway to sustainable agriculture. J. Chem. Technol. Biotechnol. 96: 551-563.   DOI
108 Ratha S, Prasanna R. 2012. Bioprospecting microalgae as potential sources of "Green Energy"?challenges and perspectives. Appl. Biochem. Microbiol. 48: 109-125.   DOI
109 Shen Y, Gao J, Li L. 2017. Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: microorganism growth and nutrients removal. Bioresour. Technol. 243: 905-913.   DOI
110 Liu X-Y, Hong Y, Zhai Q-Y, Zhao G-P, Zhang H-K, Wang Q. 2022. Performance and mechanism of Chlorella in swine wastewater treatment: roles of nitrogen-phosphorus ratio adjustment and indigenous bacteria. Bioresour. Technol. 358: 127402.
111 Wieczorek N, Kucuker MA, Kuchta K. 2015. Microalgae-bacteria flocs (MaB-Flocs) as a substrate for fermentative biogas production. Bioresour. Technol. 194: 130-136.   DOI
112 Kim D-H, Yun H-S, Kim Y-S, Kim J-G. 2020. Effects of co-culture on improved productivity and bioresource for microalgal biomass using the floc-forming bacteria Melaminivora jejuensis. Front. Bioeng. Biotechnol. 8: 588210.
113 Prathima Devi M, Swamy YV, Venkata Mohan S. 2013. Nutritional mode influences lipid accumulation in microalgae with the function of carbon sequestration and nutrient supplementation. Bioresour. Technol. 142: 278-286.   DOI
114 Lacroux J, Seira J, Trably E, Bernet N, Steyer JP, van Lis R. 2021. Mixotrophic growth of Chlorella sorokiniana on acetate and butyrate: interplay between substrate, C:N ratio and pH. Front. Microbiol. 12: 703614.
115 Perez-Garcia O, Bashan Y, Esther Puente M. 2011. Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella Vulgaris. J. Phycol. 47: 190-199.   DOI
116 Kumar K, Das D. 2012. Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors. Bioresour. Technol. 116: 307-313.   DOI
117 Huang A, Sun L, Wu S, Liu C, Zhao P, Xie X, et al. 2017. Utilization of glucose and acetate by Chlorella and the effect of multiple factors on cell composition. J. Appl. Phycol. 29: 23-33.   DOI
118 Qiu R, Gao S, Lopez PA, Ogden KL. 2017. Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Res. 28: 192-199.   DOI
119 Xie Z, Lin W, Liu J, Luo J. 2020. Mixotrophic cultivation of Chlorella for biomass production by using pH-stat culture medium: glucose-acetate-phosphorus (GAP). Bioresour. Technol. 313: 123506.
120 Li X, Song M, Yu Z, Wang C, Sun J, Su K, et al. 2022. Comparison of heterotrophic and mixotrophic Chlorella pyrenoidosa cultivation for the growth and lipid accumulation through acetic acid as a carbon source. J. Environ. Chem. Eng. 10: 107054.
121 Wang S-K, Wang X, Tao H-H, Sun X-S, Tian Y-T. 2018. Heterotrophic culture of Chlorella pyrenoidosa using sucrose as the sole carbon source by co-culture with immobilized yeast. Bioresour. Technol. 249: 425-430.   DOI
122 Zhang W, Zhang P, Sun H, Chen M, Lu S, Li P. 2014. Effects of various organic carbon sources on the growth and biochemical composition of Chlorella pyrenoidosa. Bioresour. Technol. 173: 52-58.   DOI
123 Wang S, Wu Y, Wang X. 2016. Heterotrophic cultivation of Chlorella pyrenoidosa using sucrose as the sole carbon source by coculture with Rhodotorula glutinis. Bioresou. Technol. 220: 615-620.   DOI
124 Kilian SG, Sutherland FCW, Meyer PS, du Preez JC. 1996. Transport-limited sucrose utilization and neokestose production by Phaffia rhodozyma. Biotechnol. Lett. 18: 975-980.   DOI
125 Tian Y-T, Wang X, Cui Y-H, Wang S-K. 2020. A symbiotic yeast to enhance heterotrophic and mixotrophic cultivation of Chlorella pyrenoidosa using sucrose as the carbon source. Bioprocess Biosyst. Eng. 43: 2243-2252.   DOI
126 Hu D, Zhang J, Chu R, Yin Z, Hu J, Nugroho YK, et al. 2021. Microalgae Chlorella vulgaris and Scenedesmus dimorphus cocultivation with landfill leachate for pollutant removal and lipid production. Bioresour. Technol. 342: 126003.
127 Egwu CN, Babalola R, Udoh TH, Esio OO. 2022. Nanotechnology: Applications, Challenges, and Prospects, pp. 3-15. In Ayeni AO, Oladokun O, Orodu OD (eds.), Advanced Manufacturing in Biological, Petroleum, and Nanotechnology Processing: Application Tools for Design, Operation, Cost Management, and Environmental Remediation, Ed. Springer International Publishing, Cham
128 Sarkar RD, Singh HB, Kalita MC. 2021. Enhanced lipid accumulation in microalgae through nanoparticle-mediated approach, for biodiesel production: a mini-review. Heliyon 7: e08057.
129 Schuler LM, Schulze PS, Pereira H, Barreira L, Leon R, Varela J. 2017. Trends and strategies to enhance triacylglycerols and highvalue compounds in microalgae. Algal Res. 25: 263-273.   DOI
130 Canelli G, Neutsch L, Carpine R, Tevere S, Giuffrida F, Rohfritsch Z, et al. 2020. Chlorella vulgaris in a heterotrophic bioprocess: study of the lipid bioaccessibility and oxidative stability. Algal Res. 45: 101754.
131 Meticulous Research. Chlorella Market by Technology (Open Pond), by Product Type (Extract, Capsules) by Source (Chlorella Vulgaris, Chlorella Pyrenoidosa or Sorokiniana) by Application (Nutraceutical, Food and Beverages, Animal Feed), Geography - Global Forecast to 2028. Meticulous Research. 2021. Avaliable online: https://www.meticulousresearch.com/product/chlorellamarket-5162
132 Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. 2015. Understanding nitrate assimilation and its regulation in microalgae. Front. Plant Sci. 6: 899.
133 Wu C, Xiong W, Dai J, Wu Q. 2016. Kinetic flux profiling dissects nitrogen utilization pathways in the oleaginous green alga Chlorella protothecoides. J. Phycol. 52: 116-124.   DOI
134 Terrado R, Monier A, Edgar R, Lovejoy C. 2015. Diversity of nitrogen assimilation pathways among microbial photosynthetic eukaryotes. J. Phycol. 51: 490-506.   DOI
135 Drath M, Kloft N, Batschauer A, Marin K, Novak J, Forchhammer K. 2008. Ammonia triggers photodamage of photosystem II in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol. 147: 206-215.   DOI
136 Markou G, Vandamme D, Muylaert K. 2014. Ammonia inhibition on Arthrospira platensis in relation to the initial biomass density and pH. Bioresour. Technol. 166: 259-265.   DOI
137 Sharma KK, Schuhmann H, Schenk PM. 2012. High lipid induction in microalgae for biodiesel production. Energies 5: 1532-1553.   DOI
138 Sibi G, Ananda Kumar D, Gopal T, Harinath K, Banupriya S, Chaitra S. 2017. Metal nanoparticle triggered growth and lipid production in Chlorella vulgaris. Int. J. Sci. Res. Environ. Sci. Toxicol. 2: 1-8.
139 Vashist V, Chauhan D, Bhattacharya A, Rai MP. 2020. Role of silica coated magnetic nanoparticle on cell flocculation, lipid extraction and linoleic acid production from Chlorella pyrenoidosa. Nat. Product Res. 34: 2852-2856.   DOI
140 Sarma SJ, Das RK, Brar SK, Le Bihan Y, Buelna G, Verma M, et al. 2014. Application of magnesium sulfate and its nanoparticles for enhanced lipid production by mixotrophic cultivation of algae using biodiesel waste. Energy 78: 16-22.   DOI
141 Kawamura K, Sumii K, Matsumoto M, Nakase D, Kosaki Y, Ishikawa M. 2018. Determining the optimal cultivation strategy for microalgae for biodiesel production using flow cytometric monitoring and mathematical modeling. Biomass Bioenergy 117: 24-31.   DOI
142 Farooq W, Naqvi SR, Sajid M, Shrivastav A, Kumar K. 2022. Monitoring lipids profile, CO2 fixation, and water recyclability for the economic viability of microalgae Chlorella vulgaris cultivation at different initial nitrogen. J. Biotechnol. 345: 30-39.   DOI
143 Cho JM, Oh YK, Park WK, Chang YK. 2020. Effects of nitrogen supplementation status on CO2 biofixation and biofuel production of the promising microalga Chlorella sp. ABC-001. J. Microbiol. Biotechnol. 30: 1235-1243.   DOI
144 Jerez CG, Malapascua JR, Sergejevova M, Figueroa FL, Masojidek. 2016. Effect of nutrient starvation under high irradiance on lipid and starch accumulation in Chlorella fusca (Chlorophyta). Mar. Biotechnol. 18: 24-36.   DOI
145 Zhan J, Hong Y, Hu H. 2016. Effects of nitrogen sources and C/N ratios on the lipid-producing potential of Chlorella sp. HQ. J. Microbiol. Biotechnol. 26: 1290-1302.   DOI
146 Pozzobon V, Cui N, Moreaud A, Michiels E, Levasseur W. 2021. Nitrate and nitrite as mixed source of nitrogen for Chlorella vulgaris: growth, nitrogen uptake and pigment contents. Bioresour. Technol. 330: 124995.
147 Mutlu YB, Isck O, Uslu L, Koc K, Durmaz Y. 2011. The effects of nitrogen and phosphorus deficiencies and nitrite addition on the lipid content of Chlorella vulgaris (Chlorophyceae). Afr. J. Biotechnol. 10: 453-456.
148 Li S, Zheng X, Chen Y, Song C, Lei Z, Zhang Z. 2020. Nitrite removal with potential value-added ingredients accumulation via Chlorella sp. L38. Bioresour. Technol. 313: 123743.
149 Schnurr PJ, Espie GS, Allen DG. 2013. Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation. Bioresour. Technol. 136: 337-344.   DOI
150 Davis E, Dedrick J, French C, Milner H, Myers J, Smith J, et al. 1953. Laboratory experiments on Chlorella culture at the Carnegie Institution of Washington department of plant biology. Algal Culture Lab. Pilot Plant 105-153.
151 Feng P, Xu Z, Qin L, Alam MA, Wang Z, Zhu S. 2020. Effects of different nitrogen sources and light paths of flat plate photobioreactors on the growth and lipid accumulation of Chlorella sp. GN1 outdoors. Bioresour. Technol. 301: 122762.
152 Nayak M, Suh WI, Chang YK, Lee B. 2019. Exploration of two-stage cultivation strategies using nitrogen starvation to maximize the lipid productivity in Chlorella sp. HS2. Bioresour. Technol. 276: 110-118.   DOI
153 Salbitani G, Carfagna S. 2021. Ammonium utilization in microalgae: a sustainable method for wastewater treatment. Sustainability 13: 956.
154 Dong L, Li D, Li C. 2020. Characteristics of lipid biosynthesis of Chlorella pyrenoidosa under stress conditions. Bioprocess Biosyst. Eng. 43: 877-884.   DOI
155 Fan J, Cui Y, Wan M, Wang W, Li Y. 2014. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors. Biotechnol. Biofuels 7: 17.
156 Mao X, Wu T, Sun D, Zhang Z, Chen F. 2018. Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production. Bioresour. Technol. 249: 791-798.   DOI
157 Sakarika M, Kornaros M. 2019. Chlorella vulgaris as a green biofuel factory: comparison between biodiesel, biogas and combustible biomass production. Bioresour. Technol. 273: 237-243.   DOI
158 Gour RS, Garlapati VK, Kant A. 2020. Effect of salinity stress on lipid accumulation in Scenedesmus sp. and Chlorella sp.: feasibility of stepwise culturing. Curr. Microbiol. 77: 779-785.   DOI
159 Kim HS, Kim M, Park W-K, Chang YK. 2020. Enhanced lipid production of Chlorella sp. HS2 using serial optimization and heat shock. 30: 136-145.
160 Kim S, Kim H, Ko D, Yamaoka Y, Otsuru M, Kawai-Yamada M, et al. 2013. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A. PLoS One 8: e81978.
161 Zhang L, Liao C, Yang Y, Wang Y-Z, Ding K, Huo D, et al. 2019. Response of lipid biosynthesis in Chlorella pyrenoidosa to intracellular reactive oxygen species level under stress conditions. Bioresour. Technol. 287: 121414.
162 Lin Y, Dai Y, Xu W, Wu X, Li Y, Zhu H, et al. 2022. The growth, lipid accumulation and fattya acid profile analysis by abscisic acid and indol-3-acetic acid induced in Chlorella sp. FACHB-8. Int. J. Mol. Sci. 23: 4064.
163 Tam N, Wong Y. 1996. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresour. Technol. 57: 45-50.   DOI
164 Azov Y, Goldman JC. 1982. Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl. Environ. Microbiol. 43: 735-739.   DOI
165 Dai GZ, Qiu BS, Forchhammer K. 2014. Ammonium tolerance in the cyanobacterium Synechocystis sp. strain PCC 6803 and the role of the psbA multigene family. Plant Cell Environ. 37: 840-851.   DOI
166 Wang J, Zhou W, Chen H, Zhan J, He C, Wang Q. 2019. Ammonium nitrogen tolerant Chlorella strain screening and its damaging effects on photosynthesis. Front. Microbiol. 9: 3250.
167 Ziganshina EE, Bulynina SS, Ziganshin AM. 2022. Growth characteristics of Chlorella sorokiniana in a photobioreactor during the utilization of different forms of nitrogen at various temperatures. Plants 11: 1086.
168 Rehman A, Shakoori AR. 2001. Heavy metal resistance Chlorella spp., isolated from tannery effluents, and their role in remediation of hexavalent chromium in industrial waste water. Bull. Environ. Contam. Toxicol. 66: 542-547.   DOI
169 Collos Y, Harrison PJ. 2014. Acclimation and toxicity of high ammonium concentrations to unicellular algae. Mar. Pollut. Bull. 80: 8-23.   DOI
170 Kamako S, Hoshina R, Ueno S, Imamura N. 2005. Establishment of axenic endosymbiotic strains of Japanese Paramecium bursaria and the utilization of carbohydrate and nitrogen compounds by the isolated algae. Eur. J. Protistol. 41: 193-202.   DOI
171 Arora N, Philippidis GP. 2021. Insights into the physiology of Chlorella vulgaris cultivated in sweet sorghum bagasse hydrolysate for sustainable algal biomass and lipid production. Sci. Rep. 11: 6779.
172 Nezammahalleh H, Ghanati F, Adams II TA, Nosrati M, Shojaosadati SA. 2016. Effect of moderate static electric field on the growth and metabolism of Chlorella vulgaris. Bioresour. Technol. 218: 700-711.   DOI
173 Jaiswal KK, Kumar V, Vlaskin MS, Nanda M. 2021. Impact of pyrene (polycyclic aromatic hydrocarbons) pollutant on metabolites and lipid induction in microalgae Chlorella sorokiniana (UUIND6) to produce renewable biodiesel. Chemosphere 285: 131482.
174 Bauer LM, Costa JAV, da Rosa APC, Santos LO. 2017. Growth stimulation and synthesis of lipids, pigments and antioxidants with magnetic fields in Chlorella kessleri cultivations. Bioresour. Technol. 244: 1425-1432.   DOI
175 Deamici KM, Santos LO, Costa JAV. 2019. Use of static magnetic fields to increase CO2 biofixation by the microalga Chlorella fusca. Bioresour. Technol. 276: 103-109.   DOI
176 Costa SS, Peres BP, Machado BR, Costa JAV, Santos LO. 2020. Increased lipid synthesis in the culture of Chlorella homosphaera with magnetic fields application. Bioresour. Technol. 315: 123880.
177 Baldev E, MubarakAli D, Sivasubramanian V, Pugazhendhi A, Thajuddin N. 2021. Unveiling the induced lipid production in Chlorella vulgaris under pulsed magnetic field treatment. Chemosphere 279: 130673.
178 Yang B, Liu J, Jiang Y, Chen F. 2016. Chlorella species as hosts for genetic engineering and expression of heterologous proteins: progress, challenge and perspective. Biotechnol. J. 11: 1244-1261.   DOI
179 Lee H, Shin W-S, Kim YU, Jeon S, Kim M, Kang NK, et al. 2020. Enhancement of lipid production under heterotrophic conditions by overexpression of an endogenous bZIP transcription factor in Chlorella sp. HS2. J. Microbiol. Biotechnol. 30: 1597-1606.   DOI
180 Wang X, Zhang M-M, Sun Z, Liu S-F, Qin Z-H, Mou J-H, et al. 2020. Sustainable lipid and lutein production from Chlorella mixotrophic fermentation by food waste hydrolysate. J. Hazard. Mater. 400: 123258.
181 Cheah WY, Show PL, Yap YJ, Mohd Zaid HF, Lam MK, Lim JW, et al. 2020. Enhancing microalga Chlorella sorokiniana CY-1 biomass and lipid production in palm oil mill effluent (POME) using novel-designed photobioreactor. Bioengineered 11: 61-69.   DOI
182 Chen J-h, Liu L, Lim P-E, Wei D. 2019. Effects of sugarcane bagasse hydrolysate (SCBH) on cell growth and fatty acid accumulation of heterotrophic Chlorella protothecoides. Bioprocess Biosyst. Eng. 42: 1129-1142.   DOI
183 Vyas S, Patel A, Risse EN, Krikigianni E, Rova U, Christakopoulos P, et al. 2022. Biosynthesis of microalgal lipids, proteins, lutein, and carbohydrates using fish farming wastewater and forest biomass under photoautotrophic and heterotrophic cultivation. Bioresour. Technol. 359: 127494.