Browse > Article
http://dx.doi.org/10.4014/jmb.2108.08004

Inhibitory Activity of 4-O-Benzoyl-3'-O-(O-Methylsinapoyl)Sucrose from Polygala tenuifolia on Escherichia coli β-Glucuronidase  

Kim, Jang Hoon (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA)
Vinh, Le Ba (Institute of Marine Biochemistry(IMBC), Vietnam Academy of Science and Technology(VAST))
Hur, Mok (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA)
Koo, Sung-Cheol (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA)
Park, Woo Tae (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA)
Moon, Youn-Ho (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA)
Lee, Yoon Jeong (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA)
Kim, Young Ho (College of Pharmacy, Chungnam National University)
Huh, Yun-Chan (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA)
Yang, Seo Young (Department of Pharmaceutical Engineering, Sangji University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.11, 2021 , pp. 1576-1582 More about this Journal
Abstract
Bacterial β-glucuronidase in the intestine is involved in the conversion of 7-ethyl-10-hydroxycamptochecin glucuronide (derived from irinotecan) to 7-ethyl-10-hydroxycamptothecin, which causes intestinal bleeding and diarrhea (side effects of anti-cancer drugs). Twelve compounds (1-12) from Polygala tenuifolia were evaluated in terms of β-glucuronidase inhibition in vitro. 4-O-Benzoyl-3'-O-(O-methylsinapoyl) sucrose (C3) was highly inhibitory at low concentrations. C3 (an uncompetitive inhibitor) exhibited a ki value of 13.4 μM; inhibitory activity increased as the substrate concentration rose. Molecular simulation revealed that C3 bound principally to the Gln158-Tyr160 enzyme loop. Thus, C3 will serve as a lead compound for development of new β-glucuronidase inhibitors.
Keywords
${\beta}-glucuronidase$; Polygala tenuifolia; uncompetitive inhibitor; molecular simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Khan KM, Saad SM, Shaikh NN, Hussain S, Fakhri MI, Perveen S, et al. 2014. Synthesis and β-glucuronidase inhibitory activity of 2-arylquinazolin-4(3H)-ones. Bioorg. Med. Chem. 22: 3449-3454.   DOI
2 Taha M, Almandil NB, Rashid U, Ali M, Ibrahim M, Gollapalli M, et al. 2019. 2,5-Disubstituted thiadiazoles as potent β-glucuronidase inhibitors; Synthesis, in vitro and in silico studies. Bioorg. Chem. 91: 103126.   DOI
3 Yang W, Wei B, Yan R. 2018. Amoxapine demonstrates incomplete inhibition of β-glucuronidase activity from human gut microbiota. SLAS Discov. 23: 76-83.   DOI
4 Cheng K-W, Tseng C-H, Tzeng C-C, Leu Y-L, Cheng T-C, Wang J-Y, et al. 2019. Pharmacological inhibition of bacterial β-glucuronidase prevents irinotecan-induced diarrhea without impairing its antitumor efficacy in vivo. Pharmacol. Res. 139: 41-49.   DOI
5 Smith NF, Figg WD, Sparreboom A. 2006. Pharmacogenetics of irinotecan metabolism and transport: an update. Toxicol. In Vitro 20: 163-175.   DOI
6 Dong X-z, Huang C-I, Yu B-y, Hu Y, Mu L-h, Liu P. 2014. Effect of tenuifoliside A isolated from Polygala tenuifolia on the ERK and PI3K pathways in C6 glioma cells. Phytomedicine 21: 1178-1188.   DOI
7 Taha M, Ullah H, Muqarrabun LMRA, Khan MN, Rahim F, Ahmat N, et al. 2018. Synthesis of bis-indolylmethanes as new potential inhibitors of β-glucuronidase and their molecular docking studies. Eur. J. Med. Chem. 143: 1757-1767.   DOI
8 Chen G-Y, Zhang H, Yang F-Q. 2021. A simple and portable method for β-glucosidase activity assay and its inhibitor screening based on a personal glucose meter. Anal. Chim. Acta 1142: 19-27.   DOI
9 Wallace BD, Wang H, Lane KT, Scott JE, Orans J, Koo JS, et al. 2005. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330: 831-835.   DOI
10 Weng Z-M, Wang P, Ge G-B, Dai Z-R, Wu D-C, Zou L-W, et al. 2017. Structure-activity relationships of flavonoids as natural inhibitors against E. coli β-glucuronidase. Food Chem. Toxicol. 109: 975-983.   DOI
11 Dashnyam P, Mudududdla R, Hsieh T-J, Lin T-C, Lin H-Y, Chen P-Y, et al. 2018. β-Glucuronidases of opportunistic bacteria are the major contributors to xenobiotic-induced toxicity in the gut. Sci. Rep. 8: 16372.   DOI
12 Cheng KW, Tseng CH, Yang CN, Tzeng CC, Cheng TC, Leu YL, et al. 2017. Specific inhibition of bacterial β-glucuronidase by pyrazolo[4,3-c]quinoline derivatives via a pH-dependent manner to suppress chemotherapy-induced intestinal toxicity. J. Med. Chem. 60: 9222-9238.   DOI
13 Wei B, Yang W, Yan Z-X, Zhang Q-W, Yan R. 2018. Prenylflavonoids sanggenon C and kuwanon g from mulberry (Morus alba L.) as potent broad-spectrum bacterial β-glucuronidase inhibitors: Biological evaluation and molecular docking studies. J. Funct. Foods 48: 210-219.   DOI
14 Li J, Zhong J, Chen H, Yu Q, Yan C. 2020. Structural characterization and anti-neuroinflammatory activity of a heteropolysaccharide isolated from the rhizomes of Polygala tenuifolia. Ind. Crops Prod. 155: 112792.   DOI
15 Zhang F-S, Zhang X, Wang Q-Y, Pu Y-J, Du C-H, Qin X-M, et al. 2020. Cloning, yeast expression, and characterization of a β-amyrin C-28 oxidase (CYP716A249) involved in triterpenoid biosynthesis in Polygala tenuifolia. Biol. Pharm. Bull. 43: 1839-1846.   DOI
16 Liu J, Liu A, Mao F, Zhao Y, Cao Z, Cen N, et al. 2019. Determination of the active ingredients and biopotency in Polygala tenuifolia Willd. and the ecological factors that influence them. Ind. Crops Prod. 134: 113-123.   DOI
17 Kim K-S, Lee D-S, Bae G-S, Park S-J, Kang D-G, Lee H-S, et al. 2013. The inhibition of JNK MAPK and NF-κB signaling by tenuifoliside A isolated from Polygala tenuifolia in lipopolysaccharide-induced macrophages is associated with its anti-inflammatory effect. Eur. J. Pharmacol. 721: 267-276.   DOI
18 Vinh LB, Kim JH, Lee JS, Nguyet NTM, Yang SY, Ma JY, et al. 2018. Soluble epoxide hydrolase inhibitory activity of phenolic glycosides from Polygala tenuifolia and in silico approach. Med. Chem. Res. 27: 726-734.   DOI
19 Vinh LB, Heo M, Phong NV, Ali I, Koh YS, Kim YH, et al. 2020. Bioactive compounds from Polygala tenuifolia and their inhibitory effects on lipopolysaccharide-stimulated pro-inflammatory cytokine production in bone marrow-derived dendritic cells. Plants 9: 1240.   DOI
20 Liew SY, Sivasothy Y, Shaikh NN, Isa DM, Lee VS, Choudhary MI, et al. 2020. β-Glucuronidase inhibitors from Malaysian plants. J. Med. Struct. 1221: 128743.   DOI
21 Awolade P, Cele N, Kerru N, Gummidi L, Oluwakemi E. 2020. Therapeutic significance of β-glucuronidase activity and its inhibitors: A review. Eur. J. Med. Chem. 187: 111921.   DOI
22 Sun C-P, Yan J-K, Yi J, Zhang XY, Yu Z-L, Huo X-K, et al. 2020. The study of inhibitory effect of natural flavonoids toward β-glucuronidase and interaction of flavonoids with β-glucuronidase. Inter. J. Biol. Macromol. 143: 349-358.   DOI
23 Lacaille-Dubois M-A, Delaude C, Mitaine-Offer A-C. 2020. A review on the phytopharmacological studies of the genus Polygala. J. Ethnopharm. 249: 112417.   DOI
24 Ebuzoeme C, Etim I, Ikimi A, Song J, Du T, Hu M, et al. 2021. Glucuronides hydrolysis by intestinal microbial β-glucuronidases (GUS) is affected by sampling, enzyme preparation, buffer pH, and species. Pharmaceutics 13: 1043.   DOI