Browse > Article
http://dx.doi.org/10.4014/jmb.2101.01026

Overexpression of Capsular Polysaccharide Biosynthesis Protein in Lactobacillus plantarum P1 to Enhance Capsular Polysaccharide Production for Di-n-butyl Phthalate Adsorption  

Liu, Wei-Bing (Lab of Biosystems and Microanalysis, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Lin, Zhi-Wei (Lab of Biosystems and Microanalysis, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Zhou, Ying (Lab of Biosystems and Microanalysis, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Ye, Bang-Ce (Lab of Biosystems and Microanalysis, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.11, 2021 , pp. 1545-1551 More about this Journal
Abstract
Exopolysaccharides (EPSs) such as capsular polysaccharide (CPS) are important bioactive carbohydrate compounds and are often used as bioenrichment agents and bioabsorbers to remove environmental pollutants like di-n-butyl phthalate (DBP). Among the EPS-producing bacteria, lactic acid bacteria (LAB) have gained the most attention. As generally recognized as safe (GRAS) microorganisms, LAB can produce EPSs having many different structures and no health risks. However, EPS production by LAB does not meet the needs of large-scale application on an industrial scale. Here, the capA gene (encoding CPS biosynthesis protein) was overexpressed in Lactobacillus plantarum P1 to improve the production of EPSs and further enhance the DBP adsorption capability. Compared with P1, the CPS production in capA overexpressed strain was increased by 11.3 mg/l, and the EPS thickness was increased from 0.0786 ± 0.0224 ㎛ in P1 to 0.1160 ± 0.0480 ㎛ in P1-capA. These increases caused the DBP adsorption ratio of P1-capA to be doubled. Overall, the findings in this study provide a safe method for the adsorption and removal of DBP.
Keywords
Lactobacillus plantarum; exopolysaccharides; probiotics; overexpression; di-n-butyl phthalate; adsorption;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Labrie S, Bart C, Vadeboncoeur C, Moineau S. 2005. Use of an α-galactosidase gene as a food-grade selection marker for Streptococcus thermophilus. J. Dairy Sci. 88: 2341-2347.   DOI
2 Sridhar VR, Smeianov VV, Steele JL. 2006. Construction and evaluation of food-grade vectors for Lactococcus lactis using aspartate aminotransferase and α-galactosidase as selectable markers. J. Appl. Microbiol. 101: 161-171.   DOI
3 Lebeer S, Claes IJJ, Verhoeven TLA, Vanderleyden J, De Keersmaecker SCJ. 2011. Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb. Biotechnol. 4: 368-374.   DOI
4 Wang C, Zhang C-W, Liu H-C, Yu Q, Pei X-F. 2008. Non-fusion and fusion expression of β-galactosidase from Lactobacillus bulgaricus in Lactococcus lactis. Biomed. Environ. Sci. 21: 389-397.   DOI
5 Liu C-T, Hsu IT, Chou C-C, Lo P-R, Yu R-C. 2009. Exopolysaccharide production of Lactobacillus salivarius BCRC 14759 and Bifidobacterium bifidum BCRC 14615. World J. Microbiol. Biotechnol. 25: 883-890.   DOI
6 Ciszek-Lenda M, Nowak B, Srottek M, Gamian A, Marcinkiewicz J. 2011. Immunoregulatory potential of exopolysaccharide from Lactobacillus rhamnosus KL37. Effects on the production of inflammatory mediators by mouse macrophages. Int. J. Exp. Pathol. 92: 382-391.   DOI
7 Lebeer S, Claes IJ, Verhoeven TL, Vanderleyden J, De Keersmaecker SC. 2011. Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb. Biotechnol. 4: 368-374.   DOI
8 Jin L, Sun X, Zhang X, Guo Y, Shi H. 2014. Co-metabolic biodegradation of DBP by Paenibacillus sp. S-3 and H-2. Curr. Microbiol. 68: 708-716.   DOI
9 Schmittgen T, Livak K. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protocols 3: 1101-1108.   DOI
10 Bringel F, Hubert J-C. 1990. Optimized transformation by electroporation of Lactobacillus plantarum strains with plasmid vectors. Appl. Microbiol. Biotechnol. 33: 664-670.   DOI
11 Ruhmann B, Schmid J, Sieber V. 2015. Methods to identify the unexplored diversity of microbial exopolysaccharides. Front. Microbiol. 6: 565-565.   DOI
12 Polak-Berecka M, Wasko A, Skrzypek H, Kreft A. 2013. Production of exopolysaccharides by a probiotic strain of Lactobacillus rhamnosus: Biosynthesis and purification methods. Acta Alimentaria 42: 220-228.   DOI
13 Lin DR, Cao HF, Zhong YX, Huang YC, Zou JP, He Q, et al. 2019. Screening and identification of Lactic acid bacteria from Ya'an pickle water to effectively remove Pb2+. AMB Express. 9: 10.   DOI
14 Gu XX, Tan JX, Tian HT, Zhang YL, Luo YB, Guo XH. 2014. Construction of a food-grade expression vector based on pMG36e by using an α-galactosidase gene as a selectable marker. J. Int. Agric. 13: 1802-1808.   DOI
15 van de Guchte M, van der Vossen JM, Kok J, Venema G. 1989. Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 55: 224-228.   DOI
16 Caggianiello G, Kleerebezem M, Spano G. 2016. Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl. Microbiol. Biotechnol. 100: 3877-3886.   DOI
17 Zhou Y, Cui Y, Qu X. 2019. Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: a review. Carbohydr. Polym. 207: 317-332.   DOI
18 Ge N, Xu JJ, Peng BZ, Pan SY. 2017. Adsorption mechanism of tenuazonic acid using inactivated lactic acid bacteria. Food Control 82: 274-282.   DOI
19 Daisley BA, Monachese M, Trinder M, Bisanz JE, Chmiel JA, Burton JP, et al. 2019. Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium. Gut Microbes 10: 321-333.   DOI
20 Shen Y, Zhao SJ, Zhao XD, Sun HY, Shao ML, Xu HH. 2019. In vitro adsorption mechanism of acrylamide by lactic acid bacteria. LWT-Food Sci. Technol. 100: 119-125.   DOI
21 Ciszek-Lenda M, Nowak B, Srottek M, Gamian A, Marcinkiewicz J. 2011. Immunoregulatory potential of exopolysaccharide from Lactobacillus rhamnosus KL37: effects on the production of inflammatory mediators by mouse macrophages. Int. J. Exp. Pathol. 92: 382-391.   DOI
22 Midik F, Tokatli M, Elmaci SB, Ozcelik F. 2020. Influence of different culture conditions on exopolysaccharide production by indigenous lactic acid bacteria isolated from pickles. Arch. Microbiol. 202: 875-885.   DOI
23 Macedo M, Lacroix C, Gardner N, Champagne C. 2002. Effect of medium supplementation on exopolysaccharide production by Lactobacillusrhamnosus RW-9595M in whey permeate. Int. Dairy J. 12: 419-426.   DOI
24 Becker A. 2015. Challenges and perspectives in combinatorial assembly of novel exopolysaccharide biosynthesis pathways. Front. Microbiol. 6: 687.   DOI
25 Vega MF, Dieguez SN, Riccio B, Aranguren S, Giordano A, Denzoin L, et al. 2017. Zearalenone adsorption capacity of lactic acid bacteria isolated from pigs. Braz. J. Microbiol. 48: 715-723.   DOI
26 Boels IC, Kleerebezem M, de Vos WM. 2003. Engineering of carbon distribution between glycolysis and sugar nucleotide biosynthesis in Lactococcus lactis. Appl. Environ. Microbiol. 69: 1129-1135.   DOI
27 Patel S, Majumder A, Goyal A. 2011. Potentials of exopolysaccharides from lactic acid bacteria. Ind. J. Microbiol. 52: 3-12.   DOI
28 Surayot U, Wang J, Seesuriyachan P, Kuntiya A, Tabarsa M, Lee Y, et al. 2014. Exopolysaccharides from lactic acid bacteria: structural analysis, molecular weight effect on immunomodulation. Int. J. Biol. Macromol. 68: 233-240.   DOI
29 Ojekunle O, Banwo K, Sanni A. 2017. In vitro and in vivo evaluation of Weissella cibaria and Lactobacillus plantarum for their protective effect against cadmium and lead toxicities. Lett. Appl. Microbiol. 64: 379-385.   DOI
30 Maeda H, Zhu X, Suzuki S, Suzuki K, Kitamura S. 2004. Structural characterization and biological activities of an exopolysaccharide kefiran produced by Lactobacillus kefiranofaciens WT-2BT. J. Aric. Food Chem. 52: 5533-5538.   DOI
31 Yang Z, Li S, Zhang X, Zeng X, Li D, Zhao Y, et al. 2010. Capsular and slime-polysaccharide production by Lactobacillus rhamnosus JAAS8 isolated from Chinese sauerkraut: potential application in fermented milk products. J. Biosci. Bioeng. 110: 53-57.   DOI
32 Fontana C, Li S, Yang Z, Widmalm G. 2015. Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER. Carbohydr. Res. 402: 87-94.   DOI
33 Whitfield C, Paiment A. 2003. Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr. Res. 338: 2491-2502.   DOI
34 Fang HQ, Wang J, Lynch RA. 2017. Migration of di(2-ethylhexyl)phthalate (DEHP) and di-n-butylphthalate (DBP) from polypropylene food containers. Food Control 73: 1298-1302.   DOI
35 Chen XJ, Birk C, Song CM. 2015. Time-domain analysis of wave propagation in 3-D unbounded domains by the scaled boundary finite element method. Soil Dyn. Earthq. Eng. 75: 171-182.   DOI
36 Lili Z, Hongfei Z, Shoukat S, Xiaochen Z, Bolin Z. 2017. Screening lactic acid bacteria strains with ability to bind di-n-butyl phthalate via Turbiscan technique. Antonie Van Leeuwenhoek 110: 759-769.   DOI
37 Hu J, Yang Q, Wang JL. 2015. Biodegradation of di-n-butyl phthalate in sequencing batch reactor bioaugmented with Micrococcus sp. and the bacterial community analysis. Int. J. Environ. Sci. Technol. 12: 2819-2828.   DOI
38 He Z, Niu C, Lu Z. 2014. Individual or synchronous biodegradation of di-n-butyl phthalate and phenol by Rhodococcus ruber strain DP-2. J. Hazard. Mater. 273: 104-109.   DOI
39 Yang CF, Wang CC, Chen CH. 2014. Di-n-butyl phthalate removal by strain Deinococcus sp R5 in batch reactors. Int. Biodeter. Biodegr. 95: 55-60.   DOI
40 Zhao LL, Pan X, Yang QX, Zhao RX, Li XL. 2020. The ability of lactic acid bacteria strains to remove di-n-butyl phthalate in simulated food matrices. Int. J. Food Sci. Technol. 56: 553-562.
41 McAuliffe O, Hill C, Ross R. 2000. Identification and overexpression of ltnI, a novel gene which confers immunity to the two-component lantibiotic lacticin 3147. Microbiology 146 (Pt 1): 129-138.   DOI
42 Albert O, Jegou B. 2014. A critical assessment of the endocrine susceptibility of the human testis to phthalates from fetal life to adulthood. Hum. Reprod. Update 20: 231-249.   DOI
43 Al-Gubory KH. 2014. Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development. Reprod. Biomed. Online 29: 17-31.   DOI
44 Trasande L, Attina TM. 2015. Association of exposure to di-2-ethylhexylphthalate replacements with increased blood pressure in children and adolescents. Hypertension 66: 301-308.   DOI
45 Shi X, Hu C, Cai S, Tao X, Zhou Y, Smidt H, et al. 2020. Protective effects of Lactobacillus plantarum strain P1 against toxicity of the environmental oestrogen di-n-butyl phthalate in rats. Benef. Microbes. 11: 803-813.   DOI
46 van de Guchte M, Kodde J, van der Vossen JM, Kok J, Venema G. 1990. Heterologous gene expression in Lactococcus lactis subsp. lactis: synthesis, secretion, and processing of the Bacillus subtilis neutral protease. Appl. Environ. Microbiol. 56: 2606.   DOI
47 Zajsek K, Gorsek A, Kolar M. 2013. Cultivating conditions effects on kefiran production by the mixed culture of lactic acid bacteria imbedded within kefir grains. Food Chem. 139: 970-977.   DOI
48 Daiem MMA, Rivera-Utrilla J, Ocampo-Perez R, Mendez-Diaz JD, Sanchez-Polo M. 2012. Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies - A review. J. Environ. Manage. 109: 164-178.   DOI
49 Zhao HF, Zhou F, Qi YQ, Dziugan P, Bai FL, Walczak P, et al. 2013. Screening of Lactobacillus strains for their ability to bind Benzo(a)pyrene and the mechanism of the process. Food Chem. Toxicol. 59: 67-71.   DOI
50 Feng CC, Zhang Y, Wang L, Li XQ, Chen YY, Qu JH, et al. 2020. Uptake mechanism of di-n-butyl phthalate by Novosphingobium species DNB-S3. Int. Biodeter. Biodegr. 148: 104910.   DOI
51 Raha AR, Chang LY, Sipat A, Yusoff K, Haryanti T. 2006. Expression of a thermostable xylanase gene from Bacillus coagulans ST-6 in Lactococcus lactis. Lett. Appl. Mcrobiol. 42: 210-214.   DOI
52 Mende S, Rohm H, Jaros D. 2016. Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products. Int. Dairy J. 52: 57-71.   DOI
53 Dilna SV, Surya H, Aswathy RG, Varsha KK, Sakthikumar DN, Pandey A, et al. 2015. Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT - Food Sci. Technol. 64: 1179-1186.   DOI