Browse > Article
http://dx.doi.org/10.4014/jmb.2005.05033

An Improved Approach to Identify Bacterial Pathogens to Human in Environmental Metagenome  

Yang, Jihoon (Department of Civil and Environmental Engineering, Yonsei University)
Howe, Adina (Department of Agricultural and Biosystems Engineering, Iowa State University)
Lee, Jaejin (Department of Agricultural and Biosystems Engineering, Iowa State University)
Yoo, Keunje (Department of Environmental Engineering, Korea Maritime and Ocean University)
Park, Joonhong (Department of Civil and Environmental Engineering, Yonsei University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.9, 2020 , pp. 1335-1342 More about this Journal
Abstract
The identification of bacterial pathogens to humans is critical for environmental microbial risk assessment. However, current methods for identifying pathogens in environmental samples are limited in their ability to detect highly diverse bacterial communities and accurately differentiate pathogens from commensal bacteria. In the present study, we suggest an improved approach using a combination of identification results obtained from multiple databases, including the multilocus sequence typing (MLST) database, virulence factor database (VFDB), and pathosystems resource integration center (PATRIC) databases to resolve current challenges. By integrating the identification results from multiple databases, potential bacterial pathogens in metagenomes were identified and classified into eight different groups. Based on the distribution of genes in each group, we proposed an equation to calculate the metagenomic pathogen identification index (MPII) of each metagenome based on the weighted abundance of identified sequences in each database. We found that the accuracy of pathogen identification was improved by using combinations of multiple databases compared to that of individual databases. When the approach was applied to environmental metagenomes, metagenomes associated with activated sludge were estimated with higher MPII than other environments (i.e., drinking water, ocean water, ocean sediment, and freshwater sediment). The calculated MPII values were statistically distinguishable among different environments (p < 0.05). These results demonstrate that the suggested approach allows more for more accurate identification of the pathogens associated with metagenomes.
Keywords
Environmental metagenome; bacterial pathogens; mtagenomic pathogen identification; microbial risk assessment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tang J, Bu Y, Zhang XX, Huang K, He X, Ye L, et al. 2016. Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water. Ecotoxicol. Environ. Saf. 132: 260-269.   DOI
2 Fawcett T. 2006. An introduction to ROC analysis. Pattern. Recognit. Lett. 27: 861-874.   DOI
3 Florkowski CM. 2008. Sensitivity, specificity, Receiver-Operating Characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests. Clin. Biochem. Rev. 29: S83-S87.
4 Harvey R, McBean E. 2015. A Data Mining Tool for Planning Sanitary Sewer Condition Inspection, pp. 181-199. In Hipel K, Fang L, Cullmann J, Bristow M (eds.), Conflict Resolution in Water Resources and Environmental Management, Springer, Cham.
5 Youngstrom EA. 2014. A primer on receiver operating characteristic analysis and diagnostic efficiency statistics for pediatric psychology: we are ready to ROC. J. Pediatr. Psychol. 39: 204-221.   DOI
6 Ibarbalz FM, Orellana E, Figuerola ELM, Erijman L. 2016. Shotgun metagenomic profiles have a high capacity to discriminate samples of activated sludge according to wastewater type. Appl. Environ. Microbiol. 82: 5186-5196.   DOI
7 Kopf A, Bicak M, Kottmann R, Schnetzer J, Kostadinov I, Lehmann K, et al. 2015. The ocean sampling day consortium. Gigascience 4: 27.   DOI
8 Ma L, Li B, Jiang XT, Wang YL, Xia Y, Li AD, et al. 2017. Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey. Microbiome. 5: 154.   DOI
9 Pinto AJ, Marcus DN, Ijaz UZ, Bautista-de lose Santos QM, Dick GJ, Raskin L. 2016. Metagenomic evidence for the presence of comammox nitrospira -like bacteria in a drinking water system. mSphere. 1: e00054-15.
10 Ma L, Li B, Zhang T. 2014. Abundant rifampin resistance genes and significant correlations of antibiotic resistance genes and plasmids in various environments revealed by metagenomic analysis. Appl. Microbiol. Biotechnol. 98: 5195-5204.   DOI
11 Wommack KE, Bhavsar J, Ravel J. 2008. Metagenomics: read length matters. Appl. Environ. Microbiol. 74: 1453-1463.   DOI
12 Shapiro-Ilan DI, Fuxa JR, Lacey LA, Onstad DW, Kaya HK. 2005. Definitions of pathogenicity and virulence in invertebrate pathology. J. Invertebr. Pathol. 88: 1-7.   DOI
13 Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, et al. 2015. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5: 8365.   DOI
14 Styles D, O'Brien P, O'Boyle S, Cunningham P, Donlon B, Jones MB. 2009. Measuring the environmental performance of IPPC industry: I. Devising a quantitative science-based and policy-weighted Environmental Emissions Index. Environ. Sci. Policy 12: 226-242.   DOI
15 Behnken S, Hertweck C. 2012. Cryptic polyketide synthase genes in non-pathogenic clostridium SPP. PLoS One 7: e29609.   DOI
16 Nayfach S, Bradley PH, Wyman SK, Laurent TJ, Williams A, Eisen JA, et al. 2015. Automated and accurate estimation of gene family abundance from shotgun metagenomics. PLoS Comput. Bio. 11: e1004573.   DOI
17 Bibby K, Viau E, Peccia J. 2011. Viral metagenome analysis to guide human pathogen monitoring in environmental samples. Lett. Appl. Microbiol. 52: 386-392.   DOI
18 Li B, Ju F, Cai L, Zhang T. 2015. Profile and fate of bacterial pathogens in sewage treatment plants revealed by high-throughput metagenomic approach. Environ. Sci. Technol. 49: 10492-10502.   DOI
19 Furuse Y. 2019. Analysis of research intensity on infectious disease by disease burden reveals which infectious diseases are neglected by researchers. Proc. Natl. Acad. Sci. USA 116: 478-483.   DOI
20 Thiel T, Pratte BS, Zhong J, Goodwin L, Copeland A, Lucas S, et al. 2013. Complete genome sequence of Anabaena variabilis ATCC 29413. Stand. Genomic. Sci. 9: 562-573.
21 Turroni F, Bottacini F, Foroni E, Mulder I, Kim JH, Zomer A, Sanchez B, Bidossi A, Ferrarini A, Giubellini V, et al. 2010. Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc. Natl. Acad. Sci. USA 107: 19514-19519.   DOI
22 Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic. Acids. Symp. 41: 95-98.
23 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.   DOI
24 Richter DC, Ott F, Auch AF, Schmid R, Huson DH. 2008. MetaSim-A sequencing simulator for genomics and metagenomics. PLoS One 3: e3373.   DOI
25 Yoo K., Yoo H., Lee JM, Shukla SK, Park J. 2018. Classification and regression tree approach for prediction of potential hazards of urban airborne bacteria during Asian dust events. Sci. Rep. 8: 11823.   DOI
26 Rappuoli R. 2001. Reverse vaccinology, a genome-based approach to vaccine development. Vaccine 19: 2688-2691.   DOI
27 Perez-Losada M, Cabezas P, Castro-Nallar E, Crandall KA. 2013. Pathogen typing in the genomics era: MLST and the future of molecular epidemiology. Infect. Genet. Evol. 16: 38-53.   DOI
28 Roche A, Hammerl JA, Appel B, Dieckmann R, Dahouk SA. 2015. FISHing for bacteria in food - A promising tool for the reliable detection of pathogenic bacteria?. Food Microbiol. 46: 395-407.   DOI
29 Stewart EJ. 2012. Growing unculturable bacteria. J. Bacteriol. 194: 4151-4160.   DOI
30 Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. 2014. The importance of the viable but non-culturable state in human bacterial pathogens. Front. Microbiol. 5: 258.   DOI
31 Panicker G, Call DR, Krug MJ, Bej AK. 2004. Detection of pathogenic Vibrio spp. in shellfish by using multiplex PCR and DNA microarrays. Appl. Environ. Microbiol. 70: 7436-7444.   DOI
32 Vora GJ, Meador CE, Bird MM, Bopp CA, Andreadis JD, Stenger DA. 2005. Microarray-based detection of genetic heterogeneity, antimicrobial resistance, and the viable but nonculturable state in human pathogenic Vibrio spp. Proc. Natl. Acad. Sci. USA 102: 19109-19114.   DOI
33 Chapela MJ, Garrido-Maestu A, Cabado AG. 2015. Detection of foodborne pathogens by qPCR: a practical approach for food industry applications. Cogent. Food Agric. 1: 1-19.
34 Hay SI, Abajobir AA, Abate KH. 2017. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390: 1260-1344.   DOI
35 Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, et al. 2002. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect. Immun. 70: 631-641.   DOI
36 Aertsen W, Kint V, Van Orshoven J, Ozkan K, Muys B. 2010. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests Ecol. Model. 221: 1119-1130.   DOI
37 Ul-Saufie AZ, Yahya AS, Ramli NA, Hamid HA. 2011. Comparison between multiple linear regression and feed forward back propagation neural network models for predicting PM10 concentration level based on gaseous and meteorological parameters. Int. J. Res. Appl. Sci. Eng. Technol. 1: 42-49.
38 Roy K, Ambure P. 2016. The "double cross-validation" software tool for MLR QSAR model development. Chemom. Intell. Lab. Syst. 159: 108-126.   DOI
39 Yang X, Noyes NR, Doster E, Martin JN, Linke LM, Magnuson RJ, et al. 2016. Use of metagenomic shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production chain. Appl. Environ. Microbiol. 82: 2433-2443.   DOI
40 Mohiuddin MM, Salama Y, Schellhorn HE, Golding GB. 2017. Shotgun metagenomic sequencing reveals freshwater beach sands as reservoir of bacterial pathogens. Water Res. 115: 360-369.   DOI
41 Iseki H, Alhassan A, Ohta N, Thekisoe OMM, Yokoyama N, et al. 2007. Development of a multiplex loop-mediated isothermal amplification (mLAMP) method for the simulttaneous detection of bovine Babesia parasites. J. Microbiol. Methods 71: 281-287.   DOI
42 Wylezich C, Papa A, Beer M, et al. 2018. A versatile sample processing workflow for metagenomic pathogen detection. Sci. Rep. 8: 13108.   DOI
43 Chan MS, Maiden MCJ, Spratt BG. 2001. Database-driven Multi Locus Sequence Typing (MLST) of bacterial pathogens. Bioinformatics 17: 1077-1083.   DOI
44 Zolfo M, Tett A, Jousson O, Donati C, Segata N. 2017. MetaMLST: multi-locus strain-level bacterial typing from metagenomic samples. Nucleic. Acids Res. 45: e7.   DOI
45 Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, et al. 2014 PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 42: D581-D591.   DOI
46 Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q. 2005. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 33: D325-D328.   DOI
47 Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, et al. 2012. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 50: 1355-1361.   DOI
48 Cai L, Zhang T. 2013. Detecting human bacterial pathogens in wastewater treatment plants by a high-throughput shotgun sequencing technique. Environ. Sci. Technol. 47: 5433-5441.   DOI
49 Gillespie JJ, Wattam AR, Cammer SA, Gabbard JL, Shukla MP, Dalay O, et al. 2011. PATRIC: the comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. Infect. Immun. 79: 4286-4298.   DOI
50 Waller AS, Yamada T, Kristensen DM, Kultima JR, Sunagawa S, Koonin E V, et al. 2014. Classification and quantification of bacteriophage taxa in human gut metagenomes. ISME J. 8: 1391-1402.   DOI
51 Comas I, Homolka S, Niemann S, Gagneux S. 2009. Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS One 4: e7815.   DOI
52 Jolley KA, Maiden MC. 2013. Automated extraction of typing information for bacterial pathogens from whole genome sequence data: neisseria meningitidis as an exemplar. Euro Surveill. 18: 20379.
53 Jordan K, McAuliffe O. 2018. Chapter Seven - Listeria monocytogenes in foods. Adv. Food. Nutr. Res. 86: 181-213.   DOI
54 Zheng LL, Li YX, Ding J, Guo XK, Feng KY, Wang YJ, et al. 2012. A comparison of computational methods for identifying virulence factors. PLoS One 7: e42517.   DOI
55 Niu C, Yu D, Wang Y, Ren H, Jin Y, Zhou W, et al. 2013. Common and pathogen-specific virulence factors are different in function and structure. Virulence 4: 473-482.   DOI
56 Yang X, Noyes NR, Doster E, Martin JN, Linke LM, Magnuson RJ, et al. 2016. Use of metagenomic shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production Chain. Appl. Environ. Microbiol. 82: 2433-2443.   DOI
57 Schnoes AM, Brown SD, Dodevski I, Babbitt PC. 2009. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput. Biol. 5: e1000605.   DOI
58 Richardson EJ, Watson M. 2013. The automatic annotation of bacterial genomes. Brief. Bioinform. 14: 1-12.   DOI