Browse > Article
http://dx.doi.org/10.4014/jmb.2002.02033

Acinetobacter pullorum sp. nov., Isolated from Chicken Meat  

Elnar, Arxel G. (Department of Animal Science and Technology, Chung-Ang University)
Kim, Min-Gon (Department of Animal Science and Technology, Chung-Ang University)
Lee, Ju-Eun (Department of Animal Science and Technology, Chung-Ang University)
Han, Rae-Hee (Department of Animal Science and Technology, Chung-Ang University)
Yoon, Sung-Hee (Department of Animal Science and Technology, Chung-Ang University)
Lee, Gi-Yong (Department of Animal Science and Technology, Chung-Ang University)
Yang, Soo-Jin (Department of Animal Science and Technology, Chung-Ang University)
Kim, Geun-Bae (Department of Animal Science and Technology, Chung-Ang University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.4, 2020 , pp. 526-532 More about this Journal
Abstract
A bacterial strain, designated B301T and isolated from raw chicken meat obtained from a local market in Korea, was characterized and identified using a polyphasic taxonomic approach. Cells were gram-negative, non-motile, obligate-aerobic coccobacilli that were catalase-positive and oxidase-negative. The optimum growth conditions were 30℃, pH 7.0, and 0% NaCl in tryptic soy broth. Colonies were round, convex, smooth, and cream-colored on tryptic soy agar. Strain B301T has a genome size of 3,102,684 bp, with 2,840 protein-coding genes and 102 RNA genes. The 16S rRNA gene analysis revealed that strain B301T belongs to the genus Acinetobacter and shares highest sequence similarity (97.12%) with A. celticus ANC 4603T and A. sichuanensis WCHAc060041T. The average nucleotide identity and digital DNA-DNA hybridization values for closely related species were below the cutoff values for species delineation (95-96% and 70%, respectively). The DNA G+C content of strain B301T was 37.0%. The major respiratory quinone was Q-9, and the cellular fatty acids were primarily summed feature 3 (C16:1 ω6c/C16:1 ω7c), C16:0, and C18:1 ω9c. The major polar lipids were phosphatidylethanolamine, diphosphatidyl-glycerol, phosphatidylglycerol, and phosphatidyl-serine. The antimicrobial resistance profile of strain B301T revealed the absence of antibiotic-resistance genes. Susceptibility to a wide range of antimicrobials, including imipenem, minocycline, ampicillin, and tetracycline, was also observed. The results of the phenotypic, chemotaxonomic, and phylogenetic analyses indicate that strain B301T represents a novel species of the genus Acinetobacter, for which the name Acinetobacter pullorum sp. nov. is proposed. The type strain is B301T (=KACC 21653T = JCM 33942T).
Keywords
Acinetobacter pullorum sp. nov.; chicken meat; taxonomy; antimicrobial resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Luo Y, Javed MA, Deneer H, Chen X. 2018. Nutrient depletion-induced production of tri-acylated glycerophospholipids in Acinetobacter radioresistens. Sci. Rep. 8: 7470.   DOI
2 Hiraishi A, Masamune K, Kitamura H. 1989. Characterization of the bacterial population structure in an anaerobic-aerobic activated sludge system on the basis of respiratory quinone profiles. Appl. Environ. Microbiol. 55: 897-901.   DOI
3 Carvalheira A, Ferreira V, Sillva J, Teixeira P. 2016. Enrichment of Acinetobacter spp. from food samples. Food Microbiol. 55: 123-127.   DOI
4 Han RH, Lee JE, Yoon SH, Kim GB. 2020. Acinetobacter pullicarnis sp. nov. isolated from chicken meat. Arch. Microbiol. 202: 727-732.   DOI
5 Baker GC, Smith JJ, Cowan DA. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods 55: 541-555.   DOI
6 Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
7 Felsenstein J. 1981. Evolutionary tree from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376.   DOI
8 Bitrian M, Gonzalez RH, Paris G, Hellingwerf KJ, Nudel CB. 2013. Blue-light-dependent inhibition of twitching motility in Acinetobacter baylyi ADP1: additive involvement of three BLUF-domain-containing proteins. Microbiology 159: 1828-1841.   DOI
9 Howard A, O'Donoghue M, Feeney A, Sleator RD. 2012. Acinetobacter baumannii. Virulence 3: 243-250.   DOI
10 Peleg AY, Seifert H, Paterson DL. 2008. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 21: 538-582.   DOI
11 Wong D, Nielsen, TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. 2016. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin. Microbiol. Rev. 30: 409-447.   DOI
12 Lee I, Kim YO, Park SC, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103.   DOI
13 Meier-Kolthoff JP, Auch AF, Klenk H. Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60.   DOI
14 Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549.   DOI
15 Juni E. 2005. Genus II. Acinetobacter Brisou and Prevot 1954, pp 425-437. In Brenner DJ, Krieg NR, Stanley JT (ed) Bergey's Manual of Systematic Bacteriology, vol 2B, 2nd Ed. Springer, New York.
16 Yang C, Guo ZB, Du ZM, Yang HY, Bi YJ, Wang GQ, et al. 2012. Cellular fatty acids as chemical markers for differentiation of Acinetobacter baumannii and Acinetobacter calcoaceticus. Biomed. Environ. Sci. 25: 711-717.   DOI
17 Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 11: 1-11.   DOI
18 Steinegger M, Soding J. 2018. Clustering huge protein sequence sets in linear time. Nat. Commun. 9: 2542.   DOI
19 Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792-1797.   DOI
20 Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32: 268-274.   DOI
21 Tittsler RP, Sandholzer LA. 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol. 31: 575-580.   DOI
22 Fautz E, Reichenbach H. 1980. A simple test for flexirubin-type pigments. FEMS Microbiol. Lett. 8: 87-91.   DOI
23 Smith PB, Hancock GA, Rhoden DL. 1969. Improved medium for detecting deoxyribonuclease-producing bacteria. Appl. Microbiol. 18: 991-993.   DOI
24 Lal A, Cheeptham N. 2012. Starch agar protocol. Available from https://www.asmscience.org/content/education/protocol/protocol.3780/. Accessed Nov. 12, 2019.
25 Plou FJ, Ferrer M, Nuero OM, Calvo MV, Alcalde M, Reyes F, et al. 1998. Analysis of Tween 80 as an esterase/lipase substrate for lipolytic activity assay. Biotechnol. Tech. 12: 183-186.   DOI
26 Liu Y, Rao Q, Tu J, Zhang J, Huang M, Hu B, et al. 2018. Acinetobacter piscicola sp. nov., isolated from diseased farmed Murray cod (Maccullochella peelii peelii). Int. J. Syst. Evol. Microbiol. 68: 905-910.   DOI
27 Ho MT, Weselowski B, Yuan ZC. 2017. Complete genome sequence of Acinetobacter calcoaceticus CA16, a bacterium capable of degrading diesel and lignin. Genome Announc. 5: 1-2.
28 Jukes TH, Cantor CR. 1969. Evolution of protein molecules, pp. 21-132. In Munro HN (ed) Mammalian Protein Metabolism, New York, Academic Press, Cambridge.
29 Felsenstein J. 1985. Confidence limits on phylogenies: an approach using bootstrap. Evolution 39: 783-791.   DOI
30 Rebic V, Masic N, Teskeredzic S, Aljicevic M, Abduzaimovic A, Rebic D. 2018. The importance of Acinetobacter species in the hospital environment. Med. Arch. 72: 330-334.   DOI
31 Minnikin DE, O'Donell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, et al. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2: 233-241.   DOI
32 Hiraishi A, Ueda Y, Ishihara J, Mori T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by highperformance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42: 113-122.
33 Komagata K, Suzuki KI. 1987. Lipid and call-wall analysis in bacterial systematics. Method. Microbiol. 19: 161-207.   DOI
34 Kuykendall LD, Roy MA, O'Niell JJ, Devine TE. 1988. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonuicum. Int. J. Syst. Evol. Microbiol. 38: 358-361.
35 Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. 2016. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68: 461-466.   DOI
36 Alcock et al. 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48: D517-D525.
37 Hudzicki J. 2009. Kirby-Bauer disk diffusion susceptibility test protocol. Available at https://www.asm.org/Protocols/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Pro/. Accessed Nov. 11, 2019.
38 CLSI. 2019. Performance Standards for Antimicrobial Susceptibility Testing. 29th ed. Available from http://em100.edaptivedocs.net/dashboard.aspx. Accessed Dec. 12, 2019.