Browse > Article
http://dx.doi.org/10.4014/jmb.2008.08019

The Effect of Honokiol on Ergosterol Biosynthesis and Vacuole Function in Candida albicans  

Sun, Lingmei (Department of Pharmacology, Medical School of Southeast University)
Liao, Kai (Department of Pathology and Pathophysiology, Medical School of Southeast University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.12, 2020 , pp. 1835-1842 More about this Journal
Abstract
Ergosterol, an essential constituent of membrane lipids of yeast, is distributed in both the cell membrane and intracellular endomembrane components such as vacuoles. Honokiol, a major polyphenol isolated from Magnolia officinalis, has been shown to inhibit the growth of Candida albicans. Here, we assessed the effect of honokiol on ergosterol biosynthesis and vacuole function in C. albicans. Honokiol could decrease the ergosterol content and upregulate the expression of genes related with the ergosterol biosynthesis pathway. The exogenous supply of ergosterol attenuated the toxicity of honokiol against C. albicans. Honokiol treatment could induce cytosolic acidification by blocking the activity of the plasma membrane Pma1p H+-ATPase. Furthermore, honokiol caused abnormalities in vacuole morphology and function. Concomitant ergosterol feeding to some extent restored the vacuolar morphology and the function of acidification in cells treated by honokiol. Honokiol also disrupted the intracellular calcium homeostasis. Amiodarone attenuated the antifungal effects of honokiol against C. albicans, probably due to the activation of the calcineurin signaling pathway which is involved in honokiol tolerance. In conclusion, this study demonstrated that honokiol could inhibit ergosterol biosynthesis and decrease Pma 1p H+-ATPase activity, which resulted in the abnormal pH in vacuole and cytosol.
Keywords
Candida albicans; honokiol; ergosterol biosynthesis; vacuole;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ward DM, Chen OP, Li L, Kaplan J, Bhuiyan SA, Natarajan SK, et al. 2018. Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis. J. Biol. Chem. 293: 10782-10795.   DOI
2 Sun LM, Liao K, Liang S, Yu PH, Wang DY. 2015. Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans. J. Appl. Microbiol. 118: 826-838.   DOI
3 Wu XZ, Cheng AX, Sun LM, Sun SJ, Lou HX. 2009. Plagiochin E, an antifungal bis(bibenzyl), exerts its antifungal activity through mitochondrial dysfunction-induced reactive oxygen species accumulation in Candida albicans. Biochim. Biophys. Acta 1790: 770-777.   DOI
4 Kulkarny VV, Chavez-Dozal A, Rane HS, Jahng M, Bernardo SM, Parra KJ, et al. 2014. Quinacrine inhibits Candida albicans growth and filamentation at neutral pH. Antimicrob. Agents Chemother. 58: 7501-7509.   DOI
5 Perzov N, Padler-Karavani V, Nelson H, Nelson N. 2002. Characterization of yeast V-ATPase mutants lacking Vph1p or Stv1p and the effect on endocytosis. J. Exp. Biol. 205: 1209-1219.   DOI
6 Luna-Tapia A, DeJarnette C, Sansevere E, Reitler P, Butts A, Hevener KE, et al. 2019. The vacuolar Ca2+ ATPase pump pmc1p is required for Candida albicans pathogenesis. mSphere 4: e00715-18.
7 Chen YL, Brand A, Morrison EL, Silao FG, Bigol UG, Malbas FJ, et al. 2011. Calcineurin controls drug tolerance, hyphal growth, and virulence in Candida dubliniensis. Eukaryot. Cell 10: 803-819.   DOI
8 Gupta SS, Ton V, Beaudry V, Rulli S, Cunningham K, Rao R. 2003. Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis. J. Biol. Chem. 278: 28831-28839.   DOI
9 Pan J, Hu C, Yu JH. 2018. Lipid biosynthesis as an antifungal target. J. Fungi (Basel) 4: 50.   DOI
10 Mahto KK, Singh A, Khandelwal NK, Bhardwaj N, Jha J, Prasad R. 2014. An assessment of growth media enrichment on lipid metabolome and the concurrent phenotypic properties of Candida albicans. PLoS One 9: e113664.   DOI
11 Bhattacharya S, Esquivel BD, White TC. 2018. Overexpression or deletion of ergosterol biosynthesis genes alters doubling time, response to stress agents, and drug susceptibility in Saccharomyces cerevisiae. mBio 9: e01291-18.
12 Jorda T, Puig S. 2020. Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae. Genes (Basel) 11: 795.   DOI
13 Andres MT, Acosta-Zaldivar M, Fierro JF. 2016. Antifungal mechanism of action of lactoferrin: identification of H+-ATPase (P3AType) as a new apoptotic-cell membrane receptor. Antimicrob. Agents Chemother. 60: 4206-4216.   DOI
14 Kjellerup L, Gordon S, Cohrt KO, Brown WD, Fuglsang AT, Winther AL. 2017. Identification of antifungal H+-ATPase inhibitors with effect on plasma membrane potential. Antimicrob. Agents Chemother. 61: e00032-17.
15 Padilla-Lopez S, Pearce DA. 2006. Saccharomyces cerevisiae lacking Btn1p modulate vacuolar ATPase activity to regulate pH imbalance in the vacuole. J. Biol. Chem. 281: 10273-10280.   DOI
16 Cui J, Kaandorp JA, Sloot PM, Lloyd CM, Filatov MV. 2009. Calcium homeostasis and signaling in yeast cells and cardiac myocytes. FEMS Yeast Res. 9: 1137-1147.   DOI
17 Luna-Tapia A, Peters BM, Eberle KE, Kerns ME, Foster TP, Marrero L, et al. 2015. ERG2 and ERG24 are required for normal vacuolar physiology as well as Candida albicans pathogenicity in a murine model of disseminated but not vaginal Candidiasis. Eukaryot. Cell 14: 1006-1016.   DOI
18 Finnigan GC, Ryan M, Stevens TH. 2011. A genome-wide enhancer screen implicates sphingolipid composition in vacuolar ATPase function in Saccharomyces cerevisiae. Genetics 187: 771-783.   DOI
19 Chung JH, Lester RL, Dickson RC. 2003. Sphingolipid requirement for generation of a functional v1 component of the vacuolar ATPase. J. Biol. Chem. 278: 28872-28881.   DOI
20 Kellermayer R, Aiello DP, Miseta A, Bedwell DM. 2003. Extracellular Ca2+ sensing contributes to excess Ca2+ accumulation and vacuolar fragmentation in a pmr1Delta mutant of S. cerevisiae. J. Cell Sci. 116(Pt 8): 1637-1646.   DOI
21 Miller AJ, Vogg G, Sanders D. 1990. Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium. Proc. Natl. Acad. Sci. USA 87: 9348-9352.   DOI
22 Guo Q, Sun S, Yu J, Li Y, Cao L. 2008. Synergistic activity of azoles with amiodarone against clinically resistant Candida albicans tested by chequerboard and time-kill methods. J. Med. Microbiol. 57(Pt 4): 457-462.   DOI
23 Kean R, Ramage G. 2019. Combined antifungal resistance and biofilm tolerance: the global threat of Candida auris. mSphere 4: e00458-19.
24 Rodrigues CF, Rodrigues ME, Henriques M. 2019. Candida sp. Infections in patients with diabetes mellitus. J. Clin. Med. 8: 76.   DOI
25 Da SDA, Lee KK, Raziunaite I, Schaefer K, Wagener J, Yadav B, et al. 2016. Cell biology of Candida albicans-host interactions. Curr. Opin. Microbiol. 34: 111-118.   DOI
26 Villasmil ML, Barbosa AD, Cunningham JL, Siniossoglou S, Nickels JJ. 2020. An Erg11 lanosterol 14-alpha-demethylase-Arv1 complex is required for Candida albicans virulence. PLoS One 15: e235746.
27 Sanguinetti M, Posteraro B, Fiori B, Ranno S, Torelli R, Fadda G. 2005. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob. Agents Chemother. 49: 668-679.   DOI
28 Gao J, Wang H, Li Z, Wong AH, Wang YZ, Guo Y, et al. 2018. Candida albicans gains azole resistance by altering sphingolipid composition. Nat. Commun. 9: 4495.   DOI
29 Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R. 2010. Requirement for ergosterol in V-ATPase function underlies antifungal activity of azole drugs. PLoS Pathog. 6: e1000939.   DOI
30 Suchodolski J, Muraszko J, Bernat P, Krasowska A. 2019. A crucial role for ergosterol in plasma membrane composition, localisation, and activity of Cdr1p and H+-ATPase in Candida albicans. Microorganisms 7: 378.   DOI
31 Martinez-Munoz GA, Kane P. 2008. Vacuolar and plasma membrane proton pumps collaborate to achieve cytosolic pH homeostasis in yeast. J. Biol. Chem. 283: 20309-20319.   DOI
32 Li Y, Xu C, Zhang Q, Liu JY, Tan RX. 2005. In vitro anti-Helicobacter pylori action of 30 Chinese herbal medicines used to treat ulcer diseases. J. Ethnopharmacol. 98: 329-333.   DOI
33 Minematsu A, Miyazaki T, Shimamura S, Nishikawa H, Nakayama H, Takazono T, et al. 2019. Vacuolar proton-translocating ATPase is required for antifungal resistance and virulence of Candida glabrata. PLoS One 14: e210883.
34 Merz AJ, Wickner WT. 2004. Trans-SNARE interactions elicit Ca2+ efflux from the yeast vacuole lumen. J. Cell Biol. 164: 195-206.   DOI
35 Hurst LR, Fratti RA. 2020. Lipid rafts, sphingolipids, and ergosterol in yeast vacuole fusion and maturation. Front. Cell Dev. Biol. 8: 539.   DOI
36 Liao K, Sun L. 2018. Roles of the Hsp90-calcineurin pathway in the antifungal activity of honokiol. J. Microbiol. Biotechnol. 28: 1086-1093.   DOI
37 Sun L, Ye X, Ding D, Kai L. 2019. Opposite effects of vitamin C and vitamin E on the antifungal activity of honokiol. J. Microbiol. Biotechnol. 29: 538-547.   DOI
38 Sun L, Liao K, Hang C, Wang D. 2017. Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction. PLoS One 12: e172228.
39 Sun L, Liao K, Wang D. 2017. Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex I in Candida albicans. PLoS One 12: e184003.