Browse > Article
http://dx.doi.org/10.4014/jmb.2007.07024

Heterologous Gene Expression System Using the Cold-Inducible CnAFP Promoter in Chlamydomonas reinhardtii  

Kim, Minjae (Department of Life Science, Research Institute for Natural Sciences, Hanyang University)
Kim, Jongrae (Department of Life Science, Research Institute for Natural Sciences, Hanyang University)
Kim, Sanghee (Division of Polar Life Science, Korea Polar Research Institute, Korea Institute of Ocean Science and Technology)
Jin, EonSeon (Department of Life Science, Research Institute for Natural Sciences, Hanyang University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.11, 2020 , pp. 1777-1784 More about this Journal
Abstract
To increase the availability of microalgae as producers of valuable compounds, it is necessary to develop novel systems for gene expression regulation. Among the diverse expression systems available in microalgae, none are designed to induce expression by low temperature. In this study, we explored a cold-inducible system using the antifreeze protein (AFP) promoter from a polar diatom, Chaetoceros neogracile. A vector containing the CnAFP promoter (pCnAFP) was generated to regulate nuclear gene expression, and reporter genes (Gaussia luciferase (GLuc) and mVenus fluorescent protein (mVenus)) were successfully expressed in the model microalga, Chlamydomonas reinhardtii. In particular, under the control of pCnAFP, the expression of these genes was increased at low temperature, unlike pAR1, a promoter that is widely used for gene expression in C. reinhardtii. Promoter truncation assays showed that cold inducibility was still present even when pCnAFP was shortened to 600 bp, indicating the presence of a low-temperature response element between -600 and -477 bp. Our results show the availability of new heterologous gene expression systems with cold-inducible promoters and the possibility to find novel low-temperature response factors in microalgae. Through further improvement, this cold-inducible promoter could be used to develop more efficient expression tools.
Keywords
Cold-inducible expression system; antifreeze protein; truncated promoter; Chlamydomonas reinhardtii; Gaussia luciferase; fluorescent protein;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kindle KL. 1987. Expression of a gene for a light-harvesting chlorophyll a/b-binding protein in Chlamydomonas reinhardtii: effect of light and acetate. Plant Mol. Biol. 9: 547-563.   DOI
2 Heitzer M, Zschoernig B. 2007. Construction of modular tandem expression vectors for the green alga Chlamydomonas reinhardtii using the Cre/Iox-system. Biotechniques 43: 324.   DOI
3 Kimura M, Manabe K, Abe T, Yoshida S, Matsui M, Yamamoto YY. 2003. Analysis of hydrogen peroxide-independent expression of the high-light-inducible ELIP2 gene with the aid of the ELIP2 promoter-luciferase fusion. Photochem. Photobiol. 77: 668-674.   DOI
4 Park S, Lee Y, Lee J-H, Jin E. 2013. Expression of the high light-inducible Dunaliella LIP promoter in Chlamydomonas reinhardtii. Planta 238: 1147-1156.   DOI
5 Qing G, Ma L-C, Khorchid A, Swapna G, Mal TK, Takayama MM, et al. 2004. Cold-shock induced high-yield protein production in Escherichia coli. Nat. Biotechnol. 22: 877-882.   DOI
6 Kong F, Yamaoka Y, Ohama T, Lee Y, Li-Beisson Y. 2019. Molecular genetic tools and emerging synthetic biology strategies to increase cellular oil content in Chlamydomonas reinhardtii. Plant Cell Physiol. 60: 1184-1196.   DOI
7 Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, et al. 2007. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol. J. 5: 402-412.   DOI
8 Rasala BA, Muto M, Lee PA, Jager M, Cardoso RMF, Behnke CA, et al. 2010. Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonasreinhardtii. Plant Biotechnol. J. 8: 719-733.   DOI
9 Baier T, Kros D, Feiner RC, Lauersen KJ, Muller KM, Kruse O. 2018. Engineered fusion proteins for efficient protein secretion and purification of a human growth factor from the green microalga Chlamydomonas reinhardtii. ACS Synth. Biol. 7: 2547-2557.   DOI
10 Davies PL, Baardsnes J, Kuiper MJ, Walker VK. 2002. Structure and function of antifreeze proteins. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 357: 927-935.   DOI
11 Kim HJ, Lee JH, Hur YB, Lee CW, Park S-H, Koo B-W. 2017. Marine antifreeze proteins: structure, function, and application to cryopreservation as a potential cryoprotectant. Mar. Drugs 15: 27.   DOI
12 Jung G, Lee C-G, Kang S-H, Jin E. 2007. Annotation and expression profile analysis of cDNas from the Antarctic diatom Chaetoceros neogracile. J. Microbiol. Biotechnol. 17: 1330-1337.
13 Gwak IG, sic Jung W, Kim HJ, Kang S-H, Jin E. 2010. Antifreeze protein in Antarctic marine diatom, Chaetoceros neogracile. Mar. Biotechnol. 12: 630-639.   DOI
14 Gwak Y, Jung W, Lee Y, Kim JS, Kim CG, Ju J-H, et al. 2014. An intracellular antifreeze protein from an Antarctic microalga that responds to various environmental stresses. FASEB J. 28: 4924-4935.   DOI
15 Bayer-Giraldi M, Uhlig C, John U, Mock T, Valentin K. 2010. Antifreeze proteins in polar sea ice diatoms: diversity and gene expression in the genus Fragilariopsis. Environ. Microbiol. 12: 1041-1052.   DOI
16 Harris EH. 2013. The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use, pp. 243. Ed. Elsevier.
17 Cordero BF, Obraztsova I, Couso I, Leon R, Vargas MA, Rodriguez H. 2011. Enhancement of lutein production in Chlorella sorokiniana (Chorophyta) by improvement of culture conditions and random mutagenesis. Mar. Drugs 9: 1607-1624.   DOI
18 Potvin G, Zhang Z. 2010. Strategies for high-level recombinant protein expression in transgenic microalgae: a review. Biotechnol. Adv. 28: 910-918.   DOI
19 Bajhaiya AK, Moreira JZ, Pittman JK. 2017. Transcriptional engineering of microalgae: prospects for high-value chemicals. Trends Biotechnol. 35: 95-99.   DOI
20 Pulz O, Gross W. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65: 635-648.   DOI
21 Davies JP, Weeks DP, Grossman AR. 1992. Expression of the arylsulfatase gene from the β 2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res. 20: 2959-2965.   DOI
22 Higo K, Ugawa Y, Iwamoto M, Korenaga T. 1999. Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27: 297-300.   DOI
23 Kim M, Ahn J, Jeon H, Jin E. 2017. Development of a Dunaliella tertiolecta strain with increased zeaxanthin content using random mutagenesis. Mar. Drugs 15: 189.   DOI
24 Saini DK, Chakdar H, Pabbi S, Shukla P. 2019. Enhancing production of microalgal biopigments through metabolic and genetic engineering. Crit. Rev. Food Sci. Nutr. 60: 391-405.   DOI
25 Leon-Banares R, Gonzalez-Ballester D, Galvan A, Fernandez E. 2004. Transgenic microalgae as green cell-factories. Trends Biotechnol. 22: 45-52.   DOI
26 Doron L, Segal Na, Shapira M. 2016. Transgene expression in microalgae-from tools to applications. Front. Plant Sci. 7: 505.
27 Schroda M, Blocker D, Beck CF. 2000. The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J. 21: 121-131.   DOI
28 Solovyev VV, Shahmuradov IA, Salamov AA. 2010. Identification of promoter regions and regulatory sites. Methods Mol. Biol. 674: 57-83.   DOI
29 Chow C-N, Zheng H-Q, Wu N-Y, Chien C-H, Huang H-D, Lee T-Y, et al. 2016. PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res. 44: D1154-D1160.   DOI
30 Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30: 325-327.   DOI
31 Baek K, Lee Y, Nam O, Park S, Sim SJ, Jin E. 2016. Introducing Dunaliella LIP promoter containing light-inducible motifs improves transgenic expression in Chlamydomonas reinhardtii. Biotechnol. J. 11: 384-392.   DOI
32 Berthold P, Schmitt R, Mages W. 2002. An engineered Streptomyces hygroscopicus aph 7'' gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153: 401-412.   DOI
33 Shao N, Bock R. 2008. A codon-optimized luciferase from Gaussia princeps facilitates the in vivo monitoring of gene expression in the model alga Chlamydomonas reinhardtii. Curr. Genet. 53: 381-388.   DOI
34 Valledor L, Furuhashi T, Hanak A-M, Weckwerth W. 2013. Systemic cold stress adaptation of Chlamydomonas reinhardtii. Mol. Cell. Proteomics 12: 2032-2047.   DOI
35 Cheng L, Gao X, Li S, Shi M, Javeed H, Jing X, et al. 2010. Proteomic analysis of soybean [Glycine max (L.) Meer.] seeds during imbibition at chilling temperature. Mol. Breed 26: 1-17.   DOI
36 Li L, Peng H, Tan S, Zhou J, Fang Z, Hu Z, et al. 2019. Effects of early cold stress on gene expression in Chlamydomonas reinhardtii. Genomics 112: 1128-1138.   DOI
37 Wurdinger T, Badr C, Pike L, De Kleine R, Weissleder R, Breakefield XO, et al. 2008. A secreted luciferase for ex vivo monitoring of in vivo processes. Nat. Methods 5: 171-173.   DOI
38 Baker SS, Wilhelm KS, Thomashow MF. 1994. The 5'-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression. Plant Mol. Biol. 24: 701-713.   DOI
39 White TC, Simmonds D, Donaldson P, Singh J. 1994. Regulation of BN115, a low-temperature-responsive gene from winter Brassica napus. Plant Physiol. 106: 917-928.   DOI
40 Jiang C, Iu B, Singh J. 1996. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol. Biol. 30: 679-684.   DOI
41 Lindlof A, Brautigam M, Chawade A, Olsson O, Olsson B. 2009. In silico analysis of promoter regions from cold-induced genes in rice (Oryza sativa L.) and Arabidopsis thaliana reveals the importance of combinatorial control. Bioinformatics 25: 1345-1348.   DOI
42 Lauersen KJ, Kruse O, Mussgnug JH. 2015. Targeted expression of nuclear transgenes in Chlamydomonas reinhardtii with a versatile, modular vector toolkit. Appl. Microbiol. Biotechnol. 99: 3491-3503.   DOI
43 Lauersen KJ, Willamme R, Coosemans N, Joris M, Kruse O, Remacle C. 2016. Peroxisomal microbodies are at the crossroads of acetate assimilation in the green microalga Chlamydomonas reinhardtii. Algal Res. 16: 266-274.   DOI
44 Phillips JR, Dunn MA, Hughes MA. 1997. mRNA stability and localisation of the low-temperature-responsive barley gene family blt14. Plant Mol. Biol. 33: 1013-1023.   DOI
45 Kim J, Liu L, Hu Z, Jin E. 2018. Identification and functional analysis of the psaD promoter of Chlorella vulgaris using heterologous model strains. Int. J. Mol. Sci. 19: 1969.   DOI
46 Goldschmidt-Clermont M, Rahire M. 1986. Sequence, evolution and differential expression of the two genes encoding variant small subunits of ribulose bisphosphate carboxylase/oxygenase in Chlamydomonas reinhardtii. J. Mol. Biol. 191: 421-432.   DOI