Browse > Article
http://dx.doi.org/10.4014/jmb.2006.06013

Ergostane-Type Steroids from Korean Wild Mushroom Xerula furfuracea that Control Adipocyte and Osteoblast Differentiation  

Lee, Seoung Rak (School of Pharmacy, Sungkyunkwan University)
Choi, Jin Hee (Sungkyun Biotech Co., Ltd.)
Ryoo, Rhim (Special Forest Products Division, Forest Bioresources Department, National Institute of Forest Science)
Kim, Jin-Chul (KIST Gangneung Institute of Natural Products, Natural Product Informatics Research Center)
Pang, Changhyun (School of Chemical Engineering, Sungkyunkwan University)
Kim, Seon-Hee (Sungkyun Biotech Co., Ltd.)
Kim, Ki Hyun (School of Pharmacy, Sungkyunkwan University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.11, 2020 , pp. 1769-1776 More about this Journal
Abstract
As part of our current work to discover structurally and/or biologically novel compounds from Korean wild mushrooms, we isolated five ergostane-type steroids (1-5) from the fruiting bodies of Xerula furfuracea via repeated column chromatographic separations and HPLC purification. The chemical structures of the isolated steroids were shown to be (22E,24R)-24-methylcholesta-4,22-diene-3,6-dione (1), ergosta-7,22-diene-3β,5α,6β-triol (2), ergosta-7,22-diene-3β,5α,6β,9α-tetraol (3), (22E,24R)-5α,8α-epidioxyergosta-6,22-diene-3β-ol-3-O-β-D-glucopyranoside (4), and (22E,24R)-5α,8α-epidioxyergosta-6,9,22-triene-3β-ol-3-O-β-D-glucopyranoside (5)based on comparison of the data regarding their spectroscopic and physical properties with those of previous studies. Notably, this is the first report on the presence of the identified steroids (1-5) in this mushroom. We tested compounds 1-5 to determine their effects on adipogenesis and osteogenesis in the mouse mesenchymal stem cell line C3H10T1/2 and found that compounds 4 and 5 suppressed the differentiation of stem cells into adipocytes. Notably, in addition to its suppressive effect on adipogenesis, compound 5 was also shown to promote the osteogenic differentiation of stem cells. These findings demonstrate that the bioactive compounds isolated might be effective for the treatment of menopause-associated syndromes, such as osteoporosis and obesity, as the isolated compounds were shown to suppress adipogenesis and/or promote osteogenesis of stem cells.
Keywords
Xerula furfuracea; Physalacriaceae; ergostane-type steroids; adipogenesis; osteogenesis;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 So HM, Eom HJ, Lee D, Kim S, Kang KS, Lee IK, et al. 2018. Bioactivity evaluations of betulin identified from the bark of Betula platyphylla var. japonica for cancer therapy. Arch. Pharm. Res. 41: 815-822.   DOI
2 Yu JS, Roh HS, Baek KH, Lee S, Kim S, So HM, et al. 2018. Bioactivity-guided isolation of ginsenosides from Korean Red Ginseng with cytotoxic activity against human lung adenocarcinoma cells. J. Ginseng Res. 42: 562-570.   DOI
3 Baek SC, Choi E, Eom HJ, Jo MS, Kim S, So HM, et al. 2018. LC/MS-based analysis of bioactive compounds from the bark of Betula platyphylla var. japonica and their effects on regulation of adipocyte and osteoblast differentiation. Nat. Prod. Sci. 24: 235-240.   DOI
4 Trinh TA, Park EJ, Lee D, Song JH, Lee HL, Kim KH, et al. 2019. Estrogenic activity of sanguiin H-6 through activation of estrogen receptor αcoactivator-binding site. Nat. Prod. Sci. 25: 28-33.   DOI
5 Lee SR, Yi SA, Nam KH, Ryoo R, Lee J, Kim KH. 2019. Pantheric acids A-C from a poisonous mushroom, Amanita pantherina, promote lipid accumulation in adipocytes. J. Nat. Prod. 82: 3489-3493.   DOI
6 Lee SR, Seok S, Ryoo R, Choi SU. Kim KH. 2019. Macrocyclic trichothecene mycotoxins from a deadly poisonous mushroom, Podostroma cornu-damae. J. Nat. Prod. 82: 122-128.   DOI
7 Lee S, Lee S, Roh HS, Song SS, Ryoo R, Pang C, et al. 2018. Cytotoxic constituents from the sclerotia of Poria cocos against human lung adenocarcinoma cells by inducing mitochondrial apoptosis. Cells 7: 116.   DOI
8 Lee S, Choi E, Yang SM, Ryoo R, Moon E, Kim SH, et al. 2018. Bioactive compounds from sclerotia extract of Poria cocos that control adipocyte and osteoblast differentiation. Bioorg. Chem. 81: 27-34.   DOI
9 Kim D, Lee SK, Park KS, Kwon NY, Park HJ. 2018. Isolation of constituents with nitric oxide synthase inhibition activity from Phryma leptostachya var. asiatica. Nat. Prod. Sci. 25: 34-37.   DOI
10 Lee SR, Roh HS, Lee S, Park HB, Jang TS, Ko YJ, et al. 2018. Bioactivity-guided isolation and chemical characterization of antiproliferative constituents from morel mushroom (Morchella esculenta) in human lung adenocarcinoma cells. J. Funct. Foods 40: 249-260.   DOI
11 Migliuolo A, Piccialli V, Slca D. 1990. Steroidal ketones from the sponge Geodia cydonium. J. Nat. Prod. 53: 1262-1266.   DOI
12 Zhao J, Mou Y, Shan T, Li Y, Zhou L, Wang M, et al. 2010. Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isolated from Paris polyphylla var. yunnanensis. Molecules 15: 7961-7970.   DOI
13 Lee I, Kim J, Na M, Jung HJ, Min BS, Bae K. 2011. Cytotoxicity of ergosterol derivatives from the fruiting bodies of Hygrophorus russula. Nat. Prod. Sci. 17: 85-89.
14 Takaishi Y, Uda M, Ohashi T, Nakano K, Murakami K, Tomimatsu T. 1991. Glycosides of ergosterol derivatives from Hericum erinacens. Phytochemistry 30: 4117-4120.   DOI
15 Broussard DL, Magnus JH. Coronary heart disease risk and bone mineral density among US women and men. J. Women's Health 17: 479-490.   DOI
16 Yoshikawa K, Ikuta M, Arihara S, Matsumura E, Katayama S. 2001. Two new steroidal derivatives from the fruit body of Chlorophyllum molybdites. Chem. Pharm. Bull. 49: 1030-1032.   DOI
17 Kim KH, Choi, SU, Noh HJ, Zee O, Lee KR. 2014. Cytotoxic ergosterol derivatives from the mushroom Naematoloma fasciculare. Nat. Prod. Sci. 20: 76-79.
18 Ciuffi S, Zonefrati R, Brandi ML. 2017. Adipose stem cells for bone tissue repair. Clin. Cases Miner. Bone Metab. 14: 217-226.   DOI
19 Ching HS, Luddin N, Rahman IA, Ponnuraj KT. 2017. Expression of odontogenic and osteogenic markers in DPSCs and SHED: a review. Curr. Stem Cell. Res. Ther, 12: 71-79.
20 Moseti D, Regassa A, Kim WK. 2016. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int. J. Mol. Sci. 17: 124.   DOI
21 Ivanchina NV, Kicha AA, Stonik VA. 2011. Steroid glycosides from marine organisms. Steroids 76: 425-454.   DOI
22 Ha JW, Kim J, Kim H, Jang W, Kim KH. 2020. Mushrooms: An important source of natural bioactive compounds. Nat. Prod. Sci. 26: 118-131.   DOI
23 Gao Z, Li J, Song X, Zhang, J, Wang, X, Jing, H, et al. 2017. Antioxidative, anti-inflammation and lung-protective effects of mycelia selenium polysaccharides from Oudemansiella radicata. Int. J. Biol. Macromol. 104: 1158-1164.   DOI
24 Rho HK, Lee ES, Park HM. 2008. Perception level of vitamin D and calcium on osteoporosis treatment. J. Korean Soc. Menopause 14: 115-129.
25 Liu Q, Ng T, Wang H. 2013. Isolation and characterization of a novel lectin from the wild mushroom Oudemansiella radicata (Relhan.: Fr.) sing. Biotechnol. Bioproc. Eng. 18: 465-471.   DOI
26 Gao Z, Zhang C, Liu H, Zhu Y, Ren Z, Jing H, et al. 2018. The characteristics and antioxidation of Oudemansiella radicata selenium polysaccharides on lipopolysaccharide-induced endo-toxemic mice. Int. J. Biol. Macromol. 116: 753-764.   DOI
27 Carbonero ER, Gracher AHP, Komura DL, Marcon R, Freitas CS, Baggio CH, et al. 2008. Lentinus edodes heterogalactan: Antinociceptive and anti-inflammatory effects. Food Chem. 111: 531-537.   DOI
28 Liu Q. Zhu M, Geng X, Wang H, Ng TB. 2017. Characterization of polysaccharides with antioxidant and hepatoprotective activities from the edible mushroom Oudemansiella radicata. Molecules 22: 234.   DOI
29 Ohno M, Okamoto M, Kawabe N. 1971. Oudenone, a novel tyrosine hydroxylase inhibitor from microbial origin. J. Am. Chem. Soc. 93: 1285-1286.   DOI
30 Tsantrizos YS, Yang X, McClory A. 1999. Studies on the biosynthesis of the fungal metabolite oudenone. 2. synthesis and enzymatic cyclization of an α-diketone, open-chain precursor into oudenone in cultures of Oudemansiella radicata. J. Org. Chem. 64: 6609-6614.   DOI