Browse > Article
http://dx.doi.org/10.4014/jmb.1812.12011

Flavobacterium jocheonensis sp. nov., Isolated from Marine Green Alga Ulva pertusa  

Choi, Ha Ri (Department of Aquatic Life Medicine, Jeju National University)
Park, So Hyun (Department of Aquatic Life Medicine, Jeju National University)
Heo, Moon Soo (Department of Aquatic Life Medicine, Jeju National University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.8, 2019 , pp. 1266-1272 More about this Journal
Abstract
A bacterial strain, labeled $UR11^T$, was isolated from green alga Ulva pertusa collected from Jeju Island, Korea. $UR11^T$ was identified as a gram-negative, rod-shaped, motile by gliding and aerobic bacterial strain with yellow colonies on R2A plates. The strain $UR11^T$ grew over at a temperature range of $10^{\circ}C$ to $30^{\circ}C$ (optimally at $25^{\circ}C$), a pH range of 6.0-11 (optimally at pH 7.0) and a Nacl range of 0.5-5% Nacl (w/v). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain $UR11^T$ was a member of the genus Flavobacterium. Strain $UR11^T$ shared close similarity with F. jejuensis $EC11^T$ (98.0%) F. jumunjinense $HME7102^T$ (96.1%), F. haoranii $LQY-7^T$ (95.3%), F. dongtanense $LW30^T$ (95.1%), and F. ahnfeltiae 10Alg $130^T$(94.9%). The major fatty acids (>5%) were $iso-C_{15:0}$ (33.9%), $iso-C_{15:1}$ G (12.4%), $iso-C_{17:0}$ 3-OH (9.0%), $isoC_{16:0}$ (7.0%) and $iso-C_{15:0}$ 3-OH (6.3%). The major polar lipids were phosphatidylethanolamine, seven unknown aminolipids, two unknown aminopolarlipids and two unknown lipids. DNA-DNA hybridization value was 58% at strain $UR11^T$ with F. jejuensis $EC11^T$. Based on phenotypic, chemotaxonomic and phylogenetic evidence, strain $UR11^T$ represents a novel species of the genus Flavobacterium, for which the name Flavobacterium jocheonensis sp. nov. is proposed. The type strain is Flavobacterium jocheonensis is $UR11^T$ (=KCTC $52377^T$ =JCM $31512^T$).
Keywords
Green alga; marine bacteria; Ulva pertusa; Flavobacterium; 16S rRNA gene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Park SH, Kim JY, Kim YJ, Heo MS. 2015. Flavobacterium jejuensis sp. nov., isolated from marine brown alga Ecklonia cava. J. Microbiol. 53: 756-761.   DOI
2 Bernardet J, Bowman J. 2006. The genus Flavobacterium, pp. 481-531. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds.), The Prokaryotes, Springer, New York. USA.
3 Bernardet JF, Bowman JP. 2011. Genus I. Flavobacterium Bergey et al. 1923. In Whitman, W (ed.), pp. 112-154. Bergey's Manual of Systematic Bacteriology, 2 Ed. Williams and Wilkins, Baltimore, MD.
4 Kuo I, Saw J, Kapan DD, Christensen S, Kaneshiro KY, Donachie SP. 2013. Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemiaoahuensis, Hawai'i, and emended description of the genus Flavobacterium. Int. J. Syst. Evol. Microbiol. 63: 3280-3286.   DOI
5 Bowman JP. 2000. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int. J. Syst. Evol. Microbiol. 50: 1861-1868.   DOI
6 Wilson K. 1987. Preparation of genomic DNA from bacteria. pp. 2.4.1-2.4.5. Current Protocols in Molecular Biology. Green Publishing and Wiley-Interscience, New York, NY, USA.
7 Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.   DOI
8 Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, et al. 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261.   DOI
9 Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. 2012. Intruducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716-721   DOI
10 Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, et al. 1987. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464.   DOI
11 Stackebrandt E, Ebers J. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today 11: 152-155.
12 Joung Y, Kim H, Joh K. 2013. Flavobacterium jumunjinense sp. nov., isolated from a lagoon, and emended descriptions of Flavobacterium cheniae, Flavobacterium dongtanense and Flavobacterium gelidilacus. Int. J. Syst. Evol. Microbiol. 63: 3937-3943.   DOI
13 Zhang J, Jiang RB, Zhang XX, Hang BJ, He J, Li SP. 2010. Flavobacterium haoranii sp. nov., a cypermethrin-degrading bacterium isolated from a wastewater treatment system. Int. J. Syst. Evol. Microbiol. 60: 2882-2886.   DOI
14 Burke C, Thomas T, Lewis M, Steinberg P, Kjelleberg S. 2011. Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J. 5: 590-600.   DOI
15 Xiao YP, Hui W, Lee JS, Lee KC, Quan ZX. 2011. Flavobacterium dongtanense sp. nov., isolated from the rhizosphere of a wetland reed. Int. J. Syst. Evol. Microbiol. 61: 343-346.   DOI
16 Nedashkovskaya OI, Balabanova LA, Zhukova NV, Kim SJ, Bakunina IY, Rhee SK. 2014. Flavobacterium ahnfeltiae sp. nov., a new marine polysaccharide-degrading bacterium isolated from a Pacific red alga. Arch. Microbiol. 196: 745-752.   DOI
17 Ngo HT, Kook M, Yi TH. 2015. Flavobacterium daemonensis sp. nov., isolated from Daemo Mountain soil. Int. J. Syst. Evol. Microbiol. 65: 983-989.   DOI
18 Beleneva IA, Zhukova NV. 2006. Bacterial Communities of Some Brown and Red Algae from Peter the Great Bay, the Sea of Japan. Microbiology 75: 348-357.   DOI
19 Bolinches J, Lemos ML, Barja JL. 1988. Population dynamics of heterotrophic bacterial communities associated with Fucus vesiculosus and Ulva rigida in an estuary. Microb. Ecol. 15: 345-357.   DOI
20 Nakanishi K, Nishijima M, Nishimura M, Kuwano K, Saga N. 1996. Bacteria that induce morphogenesis in Ulva pertusa (Chlorophyta) grown under axenic conditions. J. Phycol. 32: 479-482.   DOI
21 Joint I, Tait K, Wheeler G. 2007. Cross-kingdom signalling: exploitation of bacterial quorum sensing molecules by the green seaweed Ulva. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362: 1223-1233.   DOI
22 Bergey D, Harrison F, Breed R, Hammer B, Huntoon F. 1923. Genus II. Flavobacterium gen. nov, pp. 97-117. Bergey's Manual of Determinative Bacteriology, 1 Ed. Williams and Wilkins, Baltimore, MD.
23 Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K, Vandamme P. 1996. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov.(basonym, Cytophaga aquatilis Strohl and Tait 1978). Int. J. Syst. Evol. Microbiol. 46: 128-148.
24 Kang JY, Chun JS, Jahng KY. 2013. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium. Int. J. Syst. Evol. Microbiol. 63: 1633-1638   DOI
25 Li A, H Liu, HC, Zhou YG. 2017. Flavobacterium orientale sp. nov., isolated from lake water. Int. J. Syst. Evol. Microbiol. 67: 108-112.   DOI
26 Dong K, Chen F, Du Y, Wang G. 2013. Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int. J. Syst. Evol. Microbiol. 63: 886-892.   DOI
27 Nogi Y, Soda K, Oikawa T. 2005. Flavobacterium frigidimaris sp. nov., isolated from Antarctic seawater. Syst. Appl. Microbiol. 28: 310-315.   DOI
28 Yoon JH, Park S, Kang SJ, Oh SJ, Myung SC, Kim W. 2011. Flavobacterium ponti sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 61: 81-85.   DOI
29 Shin SK, Ha Y, Cho YJ, Kwon S, Yong D, Yi H. 2017. Flavobacterium gilvum sp. nov., isolated from stream water. Int. J. Syst. Evol. Microbiol. 67: 153-157.   DOI
30 Hu G, Zhang J, Yang G, Li YY, Guan YT, Wang J, Hong Q. 2013. Flavobacterium yanchengense sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 63: 2848-2852   DOI
31 Hwang WM, Kim D, Kang K, Ahn TY. 2017. Flavobacterium eburneum sp. nov., isolated from reclaimed saline land soil. Int. J. Syst. Evol. Microbiol. 67: 55-59   DOI
32 Lim CS, Oh YS, Lee JK, Park AR, Yoo JS, Rhee SK, Roh DH. 2011. Flavobacterium chungbukense sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 61: 2734-2739.   DOI
33 Zhang G, Xian W, Chu Q, Yang J, Liu W, Yang L, et al. 2016. Flavobacterium terriphilum sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 66: 4276-4281.   DOI
34 Miyashita M, Fujimura S, Nakagawa Y, Nishizawa M, Tomizuka N, Nakagawa T, et al. 2010. Flavobacterium algicola sp. nov., isolated from marine algae. Int. J. Syst. Evol. Microbiol. 60: 344-348.   DOI
35 Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
36 Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.   DOI
37 Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic. Acids. Symp. Ser. 41: 95-98.
38 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI
39 Kluge AG, Farris FS. 1969. Quantitative phyletics and the evolution of anurans. Syst. Biol. 18: 1-32.   DOI
40 Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376.   DOI
41 Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.   DOI
42 Ezaki T, Hashimoto Y, Yabuuchi E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Evol. Microbiol. 39: 224-229.
43 Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101.
44 Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, et al. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2: 233-241.   DOI