Browse > Article
http://dx.doi.org/10.4014/jmb.1903.03065

Purification and Characterization of a Bacteriocin, BacBS2, Produced by Bacillus velezensis BS2 Isolated from Meongge Jeotgal  

Perumal, Venkatesh (Institute of Agriculture and Life Science, Gyeongsang National University)
Yao, Zhuang (Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University)
Kim, Jeong A (Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University)
Kim, Hyun-Jin (Institute of Agriculture and Life Science, Gyeongsang National University)
Kim, Jeong Hwan (Institute of Agriculture and Life Science, Gyeongsang National University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.7, 2019 , pp. 1033-1042 More about this Journal
Abstract
Bacillus velezensis BS2 was isolated from meongge (common sea squirt) jeotgal, a Korean fermented seafood, and produces a bacteriocin, BacBS2, which strongly inhibits Listeria monocytogenes and Bacillus cereus. BacBS2 was partially purified by Q-Sepharose column chromatography after ammonium sulfate precipitation of the culture supernatant, then further purified by Sephadex G-50 column chromatography. Partially purified BacBS2 was estimated to be 6.5 kDa in size by Tricine-SDS PAGE and activity detection by gel-overlay. Enzyme treatment and FT-IR spectrum of partially purified BacBS2 confirmed its proteinaceous nature. BacBS2 was fully stable at pH 4-9, and half of activity was retained at pH 1-3. Full activity was retained after exposure to $80^{\circ}C$ for 15 min, but half of the activity was retained upon exposure to $90^{\circ}C$ for 15 min or $100^{\circ}C$for 10 min. BacBS2 inhibited L. monocytogenes by bactericidal mode of action. B. velezensis BS2 and its BacBS2 seem useful as biopreservatives for fermented foods such as jeotgal.
Keywords
Bacteriocin; Bacillus velezensis; antibacterial activity; jeotgal;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Adeniji AA, Aremu OS, Babalola OO. 2018. Selecting lipopeptide-producing, Fusarium-suppressing Bacillus spp.: metabolomic and genomic probing of Bacillus velezensis NWUMFkBS10. 5. MicrobiologyOpen 8(6): e00742.
2 Uqras S, Sezen K, Kati H, Demirbaq Z. 2013. Purification and characterization of the bacteriocin Thuricin Bn1 produced by Bacillus thuringiensis subsp. kurstaki Bn1 from a hazelnut pest. J. Microbiol. Biotechnol. 23: 167-176.   DOI
3 Fan B, Blom J, Klenk HP, Borriss R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an "operational group B. amyloliquefaciens" within the B. subtilis species complex. Front. Microbiol. 8: 22.
4 Kamoun F, Mejdoub H, Aouissaoui H, Reinbolt J, Hammami A, Jaoua S. 2005. Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol. 98: 881-888.   DOI
5 Bradford MM. 1976. Rapid and sensitive methods for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI
6 Schagger H, von Jagow G. 1987. Tricine-sodium dodecyl sulphate polyacrylamide gel electrophoresis for the separation of protein in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379.   DOI
7 Liu X, Lee JY, Jeong SJ, Cho KM, Kim GM, Shin JH, et al. 2015. Properties of a bacteriocin produced by Bacillus subtilis EMD4 isolated from ganjang (soy sauce). J. Microbiol. Biotechnol. 25: 1493-1501.   DOI
8 Liu X, Shim JM, Yao Z, Lee JY, Lee KW, Kim HJ, et al. 2016. Properties of antimicrobial substances produced by Bacillus amyloliquefaciens CJW15 and Bacillus amyloliquefaciens SSD8. Microbiol. Biotechnol. Lett. 44: 9-18.   DOI
9 Tapi A, Chollet-Imbert M, Scherens B, Jacques P. 2010. New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl. Microbiol. Biotechnol. 85: 1521-1531.   DOI
10 Chung S, Kong H, Buyer JS, Lakshman DK, Lydon J, Kim SD, et al. 2008. Isolation and partial c harac terization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl. Microbiol. Biotechnol. 80: 115-123.   DOI
11 Athukorala SN, Fernando WG, Rashid KY. 2009. Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can. J. Microbiol. 55: 1021-1032.   DOI
12 Baptista JP, Sanches PP, Teixeira GM, Morey AT, Tavares ER, Yamada-Oqatta SF, et al. 2018. Complete genome sequence of Bacillus velezensis LABIM40, an effective antagonist of fungal plant pathogens. Genome Announc. 6: e00595-18.
13 Leite JA, Tulini FL, dos Reis-Teixeira FB, Rabinovitch L, Chaves JQ, Rosa NG, et al. 2016. Bacteriocin-like inhibitory substances (BLIS) produced by Bacillus cereus: preliminary characterization and application of partially purified extract containing BLIS for inhibiting Listeria monocytogenes in pineapple pulp. LWT-Food Sci. Technol. 72: 261-266.   DOI
14 Abdel-Mohsein H, Yamamoto N, Otawa K, Tada C, Nakai Y. 2010. Isolation of bacteriocin-like substances producing bacteria from finished cattle-manure compost and activity evaluation against some food-borne pathogenic and spoilage bacteria. J. Gen. Appl. Microbiol. 56: 151-161.   DOI
15 Chehimi S, Delalande F, Sable S, Hajlaoui MR, Van Dorsselaer A, Limam F, et al. 2007. Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from Bacillus thuringiensis. Can. J. Microbiol. 53: 284-290.   DOI
16 Martirani L, Varcamonti M, Naclerio G, De Felice M. 2002. Purification and partial characterization of bacillocin 490, a novel bacteriocin produced by a thermophilic strain of Bacillus licheniformis. Microb. Cell Fact. 1: 1-5.   DOI
17 Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML. 2008. Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J. Appl. Microbiol. 104: 1067-1074.   DOI
18 Cintas LM, Casaus P, Fernandez MF, Hernandez PE. 1998. Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage and foodborne pathogenic bacteria. Food Microbiol. 15: 289-298.   DOI
19 Benitez LB, Velho RV, Lisboa MP, da Costa Medina LF, Brandelli A. 2010. Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. J. Microbiol. 48: 791-797.   DOI
20 Gao YH, Guo RJ, Li SD. 2018. Draft genome sequence of Bacillus velezensis B6, a rhizobacterium that can control plant diseases. Genome Announc. 6(12): e00182-18.
21 Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857.   DOI
22 Yao Z, Kim JA, Kim JH. 2019. Charac terization of a fibrinolytic enzyme secreted by Bacillus velezensis BS2 isolated from sea squirt jeotgal. J. Microbiol. Biotechnol. 29: 347-356.   DOI
23 Ye M, Tang X, Yang R, Zhang H, Li F, Tao F, et al. 2018. Characteristics and application of a novel species of Bacillus: Bacillus velezensis. ACS Chem. Biol. 13: 500-505.   DOI
24 Sumi CD, Yang BW, Yeo IC, Hahm YT. 2015. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can. J. Microbiol. 61: 93-103.   DOI
25 Cho MS, Jin YJ, Kang BK, Park YK, Kim C, Park DS. 2018. Understanding the ontogeny and succession of Bacillus velezensis and B. subtilis subsp. subtilis by focusing on kimchi fermentation. Sci. Rep. 8: 7045.   DOI
26 Yi Y, Zhang Z, Zhao F, Liu H, Yu L, Zha J, Wang G, 2018. Probiotic potential of Bacillus velezensis JW: antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish Shellfish Immunol. 78: 322-330.   DOI
27 Nam MH, Park MS, Kim HG, Yoo SJ. 2009. Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation. J. Microbiol. Biotechnol. 19: 520-524.   DOI
28 Giongo JL, Lucas FS, Casarin F, Heeb P, Brandelli A. 2007. Keratinolytic proteases of Bacillus species isolated from the Amazon basin showing remarkable de-hairing activity. World J. Microbiol. Biotechnol. 23: 375-382.   DOI
29 Perumal V, Repally A, Dasari A, Venkatesan A. 2016. Partial purification and characterization of bacteriocin produced by Enterococcus faecalis DU10 and its probiotic attributes. Prep. Biochem. Biotechnol. 46: 686-694.   DOI
30 Ruiz-Garcia C, Bejar V, Martinez-Checa F, Llamas I, Quesada E. 2005. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain. Int. J. Syst. Evol. Microbiol. 55: 191-195.   DOI
31 Fan B, Wang C, Song X, Ding X, Wu L, Wu H, Gao X, Borriss R. 2018. Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol. Front. Microbiol. 9: 2491.   DOI
32 Liu G, Kong Y, Fan Y, Geng C, Peng D, Sun M. 2017. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. J. Biotechnol. 249: 20-24.   DOI
33 Scholz R, Vater J, Budiharjo A, Wang Z, He Y, Dietel K, et al. 2014. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J. Bacteriol. 196: 1842-1852.   DOI
34 Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, et al. 2018. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci. Rep. 8: 4360.   DOI