Browse > Article
http://dx.doi.org/10.4014/jmb.1804.04031

The Selective Inhibitory Activity of a Fusaricidin Derivative on a Bloom-Forming Cyanobacterium, Microcystis sp.  

Ko, So-Ra (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Lee, Young-Ki (IPst Company)
Srivastava, Ankita (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Park, Seung-Hwan (Infections Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Ahn, Chi-Yong (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Oh, Hee-Mock (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.1, 2019 , pp. 59-65 More about this Journal
Abstract
Fusaricidin analogs, produced by Paenibacillus polymyxa, were tested for selective control of a major bloom-forming cyanobacterium, Microcystis sp. Fusaricidin (A and B mixtures) and four analogs were isolated from P. polymyxa E681 and investigated for their inhibition of cyanobacterial cell growth. Among the four fusaricidin analogs, fraction 915 Da (designated as Fus901) showed growth inhibition activity for Microcystis aeruginosa but not for Anabaena variabilis and Scenedesmus acutus. Microcystin concentration decreased up to 70% and its content per cell also decreased over 50% after 3 days. Fusaricidin exhibited growth inhibition against Gram-positive bacteria but Fus901 did not. Molecular weights of fusaricidin A and B were 883 Da and 897 Da, whereas that of Fus901 was 915 Da. Structure analysis by a ring-opening method revealed a linear form for Fus901. Expression of the pod gene related to oxidative stress was increased 2.1-fold by Fus901 and that of mcyD decreased up to 40%. These results indicate that Fus901 exerts oxidative stress against M. aeruginosa. Thus, Fus901 can be used as a selective cyanobactericide without disturbing the ecological system and could help in decreasing the microcystin concentration.
Keywords
Bloom control; cyanobacteria; fusaricidin; Microcystis; Paenibacillus polymyxa;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dittmann E, Neilan BA, Erhard M, Von Dohren H, Borner T. 1997. Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol. Microbiol. 26: 779-787.   DOI
2 Tillett D, Dittmann E, Erhard M, von Dohren H, Borner, Neilan BA. 2000. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem. Biol. 7: 753-764.   DOI
3 Baker JA, Entsch B, Neilan BA, McKay DB. 2002. Monitoring changing toxigenicity of a cyanobacterial bloom by molecular methods. Appl. Environ. Microbiol. 68: 6070-6076.   DOI
4 Lawton LA, Cornish BJPA, MacDonald AWR. 1998. Removal of cyanobacterial toxins (microcystins) and cyanobacterial cells from drinking water using domestic water filters. Water Res. 32: 633-638.   DOI
5 Zhang S, Raza W, Yang X, Hu J, Huang Q, Xu Y, et al. 2008. Control of fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer. Biol. Fert. Soils. 44: 1073-1080.   DOI
6 Raza W, Yang W, Shen Q-R. 2008. Paenibacillus polymyxa: antibiotics, hydrolytic enzymes and hazard assessment. J. Plant Pathol. 90: 419-430.
7 Ward CJ, Beattie KA, Lee EYC, Codd GA. 1997. Colorimetric protein phosphatase inhibition assay of laboratory strains and natural blooms of cyanobacteria: comparisons with high-performance liquid chromatographic analysis for microcystins. FEMS Microbiol. Lett. 153: 465-473.   DOI
8 Kuroda J, Fukai T, Konishi M, Ono J, Kurusu K, Nomura T. 2000. LI-F antibiotics, a family of antifungal cyclic depsipeptides produced by Bacillus polymyxa L-1129. Heterocycles 53: 1533-1549.   DOI
9 Choi SK, Park SY, Kim R, Lee CH, Kim JF, Park SH. 2008. Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochem. Biophys. Res. Comm. 365: 89-95.   DOI
10 Wood LW. 1985. Chloroform-methanol extraction of chlorophyll a. Can. J. Fish. Aquat. Sci. 42: 38-43.   DOI
11 Kaebernick M, Neilan BA, Borner T, Dittmann E. 2000. Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl. Environ. Microbiol. 66: 3387-3392.   DOI
12 Pan G, Zhang MM, Chen H, Zou H, Yan H. 2006. Removal of cyanobacterial blooms in Taihu lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals. Environ. Pollut. 141: 195-200.   DOI
13 Chini V, Foka A, Dimitracopoulos G, Spiliopoulou I. 2007. Absolute and relative real-time PCR in the quantification of tst gene expression among methicillin-resistant Staphylococcus aureus: evaluation by two mathematical models. Lett. Appl. Microbiol. 45: 479-484.   DOI
14 Rinta-Kanto, Western Ouellette AJA, Boyer GL, Twiss MR, Bridgeman TB, Wilhelm SW. 2005. Quantification of toxin Microcystis spp. during 2003 and 2004 blooms in Wastern Lake Eric using quantitative real-time PCR. Environ. Sci. Technol. 39: 4198-4205.   DOI
15 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}C}{_T}$ method. Methods 25: 402-408.   DOI
16 Choi SK, Park SY, Kim R, Kim SB, Lee CH, Kim JF, et al. 2009. Identification of a Polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J. Bacteriol. 191: 3350-3358.   DOI
17 Lee YJ, Choi JK, Kim EK, Youn SH, Yang EJ. 2008. Field experiments on mitigation of harmful algal blooms using a sophorolipid-yellow clay mixture and effects on marine plankton. Harmful Algae 7: 154-162.   DOI
18 Han FX, Hargreaves JA, Kingery WL, Huggett DB, Schlenk DK. 2001. Accumulation, distribution, and toxicity of copper in sediments of catfish ponds receiving periodic copper sulfate applications. J. Environ. Qual. 30: 912-919.   DOI
19 Drabkova M, Marsalek B, Admiraal W. 2007. Photodynamic therapy against cyanobacteria. Environ. Toxicol. 22: 112-115.   DOI
20 Jeong JH, Jin HJ, Sohn CH, Suh KH, Hong YK. 2000. Algicidal activity of the seaweed Corallina pilulifera against red tide microalgae. J. Appl. Phycol. 12: 37-43.   DOI
21 Manage PM, Kawabata Z, Nakano SI. 2000. Algicidal effect of the bacterium Alcaligenes denitrificans on Microcystis spp. Aquat. Microb. Ecol. 22: 111-117.   DOI
22 Nakai S, Inoue Y, Hosomi M, Murakami A. 2000. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Res. 34: 3026-3032.   DOI
23 Kang YK, Cho SY, Kang YH, Katano T, Jin ES, Kong DS, et al. 2008. Isolation, identification and characterization of algicidal bacteria against Stephanodiscus hantzschii and Peridinium bipes for the control of freshwater winter algal blooms. J. Appl. Phycol. 20: 375-386.   DOI
24 Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, et al. 2006. Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol. 72: 1239-1247.   DOI
25 Mayali X, Doucette GJ. 2002. Microbial community interactions and population dynamics of an algicidal bacterium active against Karenia brevis (Dinophyceae). Harmful Algae 1: 277-293.   DOI
26 Kajimura Y, Kaneda M. 1997. Fusaricidins B, C, and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. J. Antibiot. 50: 220-228.   DOI
27 Urbach E, Robertsin D, Chisholm S. 1992. Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 335: 267-270.
28 Nubel U, Garcia-Pichel F, Muyer G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63: 3327-3332.   DOI