Browse > Article
http://dx.doi.org/10.4014/jmb.1809.09008

Characterization of Gel16 as a Cytochrome P450 in Geldanamycin Biosynthesis and in-silico Analysis for an Endogenous Electron Transport System  

Rimal, Hemraj (Department of Life Science and Biochemical Engineering, Sun Moon University)
Yu, Sang-Cheol (Department of Life Science and Biochemical Engineering, Sun Moon University)
Lee, Byeongsan (Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Hong, Young-Soo (Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Oh, Tae-Jin (Department of Life Science and Biochemical Engineering, Sun Moon University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.1, 2019 , pp. 44-54 More about this Journal
Abstract
Geldanamycin and its derivatives, inhibitors of heat shock protein 90, are considered potent anticancer drugs, although their biosynthetic pathways have not yet been fully elucidated. The key step of conversion of 4,5-dihydrogeldanamycin to geldanamycin was expected to catalyze by a P450 monooxygenase, Gel16. The adequate bioconversions by cytochrome P450 mostly rely upon its interaction with redox partners. Several ferredoxin and ferredoxin reductases are available in the genome of certain organisms, but only a few suitable partners can operate in full efficiency. In this study, we have expressed cytochrome P450 gel16 in Escherichia coli and performed an in vitro assay using 4,5-dihydrogeldanamycin as a substrate. We demonstrated that the in silico method can be applicable for the efficient mining of convenient endogenous redox partners (9 ferredoxins and 6 ferredoxin reductases) against CYP Gel16 from Streptomyces hygroscopicus. The distances for ligand FDX4-FDR6 were found to be $9.384{\AA}$. Similarly, the binding energy between Gel16-FDX4 and FDX4-FDR6 were -611.88 kcal/mol and -834.48 kcal/mol, respectively, suggesting the lowest distance and binding energy rather than other redox partners. These findings suggest that the best redox partners of Gel16 could be NADPH ${\rightarrow}$ FDR6 ${\rightarrow}$ FDX4 ${\rightarrow}$ Gel16.
Keywords
Biosynthetic pathway; cytochrome P450; electron transport system; geldanamycin; in silico analysis; redox partner;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Schenkman JB, Greim H, Zange M, Remmer H. 1969. On the problem of possible other forms of cytochrome P450 in liver microsomes. Biochim. Biophys. Acta 171: 23-31.   DOI
2 Chun YJ, Shimada T, Sanchez-Ponce R, Martin RV, Lei L, Zhao B, et al. 2007. Electron transport pathway for a Streptomyces cytochrome P450: cytochrome P450 105D5-catalyzed fatty acid hydroxylation in Streptomyces coelicolor A3 (2). J. Biol. Chem. 282: 17486-17500.   DOI
3 BeBoer C, Dietz A. 1976. The description and antibiotic production of Streptomyces hygroscopicus var. geldanus. J. Antibiot. (Tokyo) 29: 1182-1188.   DOI
4 Johnson RD, Haber A, Rinehart KL Jr. 1974. Geldanamycin biosynthesis and carbon magnetic resonance. J. Am. Chem. Soc. 96: 3316-3317.   DOI
5 Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH. 1997. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90: 65-75.   DOI
6 Sasaki K, Rinehart KL Jr., Slomp G, Grostic MF, Olson EC. 1970. Geldanamycin. I. Structure assignment. J. Am. Chem. Soc. 92: 7591-7593.   DOI
7 Hong YS, Lee D, Kim W, Jeong JK, Kim CG, Sohng JK, et al. 2004. Inactivation of the carbamoyltransferase gene refines the post-polyketide synthase modification steps in the biosynthesis of the antitumor agent geldanamycin. J. Am. Chem. Soc. 126: 11142-11143.   DOI
8 Rascher A, Hu Z, Buchanan GO, Reid R, Hutchinson CR. 2005. Insights into the biosynthesis of the benzoquinone ansamycins geldanamycin and herbimycin, obtained by gene sequencing and disruption. Appl. Environ. Microbiol. 71: 4862-4871.   DOI
9 Nakahara K, Tanimoto T, Hatano K, Usuda K, Shoun H. 1993. Cytochrome P-450 55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. J. Biol. Chem. 268: 8350-8355.   DOI
10 Shin JC, Na Z, Lee DH, Kim WC, Lee K, Shen YM, et al. 2008. Characterization of tailoring genes involved in the modification of geldanamycin polyketide in Streptomyces hygroscopicus JCM4427. J. Microbiol. Biotechnol. 18: 1101-1108.
11 Paine M, Scrutton NS, Munro A, Gutierrez A, Roberts G, Wolf CR. 2005. Cytochrome P450: structure, mechanism, and biochemistry (Ortiz de Montellano, P. R., ed.). pp. 115-148. 3rd Ed., Plenum Publishers New York.
12 O'Keefe DP, Gibson KJ, Emptage MH, Lenstra R, Romesser JA, Litle PJ, et al. 1991. Ferredoxins from two sulfonylurea herbicide monooxygenase systems in Streptomyces griseolus. Biochemistry 30: 447-455.   DOI
13 Chen R, Li L, Weng Z. 2003. ZDOCK: An Initial-Stage Protein-Docking Algorithm. Proteins 52: 80-87.   DOI
14 Bhattarai S, Liou K, Oh TJ. 2013. Hydroxylation of long chain fatty acids by CYP147F1, a new cytochrome P450 subfamily protein from Streptomyces peucetius. Arch. Biochem. Biophys. 539: 63-69.   DOI
15 Discovery Studio 3.5. (2012) Accelrys Inc., San Diego, CA, USA. Available from: http://www.accelrys.com
16 Chang HC, Oriel P. 1994. Bioproduction of perillyl alcohol and related monoterpenes by isolates of Bacillus stearothermophilus. J. Food Sci. 59: 660-662.   DOI
17 Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
18 Omura T, Sato R. 1964. The carbon monoxide-binding pigment of liver microsomes: Evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370-2378.   DOI
19 Gustafsson MC, Roitel O, Marshall KR, Noble MA, Chapman SK, Pessegueiro A, et al. 2004. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Biochem. 43: 5474-5487.   DOI
20 Yang W, Bell SG, Wang H, Zhou W, Hoskins N, Dale A, et al. 2010. Molecular characterization of a class I P450 electron transfer system from Novosphingobium aromaticivorans DSM12444. J. Biol. Chem. 285: 27372-27384.   DOI
21 Baudry J, Rupasinghe S, Schuler MA. 2006. Class dependent sequence alignment strategy improves the structural and functional modelling of P450s. Protein Eng. Des. Sel. 19: 345-353.   DOI
22 Sippl MJ. 1993. Recognition of errors in three-dimensional structures of proteins. Proteins 17: 355-362.   DOI
23 Yasutake Y, Imoto N, Fujii Y, Fujii T, Arisawa A, Tamura T. 2007. Crystal structure of cytochrome P450 MoxA from Nonomuraea recticatena (CYP105). Biochem. Biophys. Res. Commun. 361: 876-882.   DOI
24 Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. 1983. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4: 187-217.   DOI
25 Lovell SC, Davis IQ, Arendall III WB, De Bakker PI, Word JM, Prisant MG, et al. 2003. Structure validation by Calpha geometry: Phi, psi and C beta deviation. Proteins 50: 437-450.   DOI
26 Maiti R, Van Domselaar GH, Zhang H, Wishart DS. 2004. SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res. 32: W590-W594.   DOI
27 Venkatachalam CM, Jiang X, Oldfield T, Waldman M. 2003. LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J. Mol. Graph. Model. 21: 289-307.   DOI
28 Peterson JA, Lorence MC, Amarneh B. 1990. Putidaredoxin reductase and putidaredoxin: cloning, sequence determination, and heterologous expression of the proteins. J. Biol. Chem. 265: 6066-6073.   DOI
29 Li L, Chen R, Weng Z. 2003. R DOCK: refinement of rigid-body protein docking predictions. Proteins 53: 693-707.   DOI
30 Guengerich FP. 1991. Reactions and significance of cytochrome P-450 enzymes. J. Biol. Chem. 266: 10019-10022.   DOI
31 Karplus PA, Daniels MJ, Herriott JR. 1991. Atomic structure of ferredoxin-$NADP^+$ reductase: prototype for a structurally novel flavoenzyme family. Science 251: 60-66.   DOI
32 Lee JK, Jang JH, Park DJ, Kim CJ, Ahn JS, Hwang BY, et al. 2017. Identification of new geldanamycin derivatives from unexplored microbial culture extracts using a MS/MS library. J. Antibiot. 70: 323-327.   DOI
33 Rimal H, Yu SC, Jang JH, Oh TJ. 2015. Homology modeling and in vitro analysis for characterization of Streptomyces peucetius CYP157C4. J. Microbiol. Biotechnol. 25: 1417-1424.   DOI
34 Zhang T, Zhang A, Bell SG, Wong LL, Zhou W. 2014. The structure of a novel electron-transfer ferredoxin from Rhodopseudomonas palustris HaA2 which contains a histidine residue in its iron-sulfur cluster-binding motif. Acta Crystallogr. D. Biol. Crystallogr. 70: 1453-1464.   DOI
35 Lewis DF, Hlavica P. 2000. Interactions between redox partners in various cytochrome P450 systems: functional and structural aspects. Biochim. Biophys. Acta 1460: 353-374.   DOI
36 Hasemann CA, Kurumbail RG, Boddupalli SS, Peterson JA, Deisenhofer J. 1995. Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure 3: 41-62.   DOI
37 Shrestha P, Oh TJ, Niraula NP, Liou K, Yoo JC, Sohng JK. 2010. Characterization of CYP166B1 and its electron transfer system in Streptomyces peucetius var. caesius ATCC 27952. Enzyme. Microb. Technol. 46: 372-377.   DOI
38 Gotoh O. 1992. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem. 267: 83-90.   DOI
39 Frankea J, Eichnera S, Zeilinger C, Kirschning A. 2013. Targeting heat-shock-protein 90 (Hsp90) by natural products: geldanamycin, a show case in cancer therapy. Nat. Prod. Rep. 30: 1299-1323.   DOI
40 Pandey BP, Choi KY, Lee N, Kim EJ, Kim JN, Yun H, et al. 2014. Identification of the specific electron transfer proteins, ferredoxin, and ferredoxin reductase, for CYP105D7 in Streptomyces avermitilis MA4680. Appl. Microbiol. Biotechnol. 98: 5009-5017.   DOI
41 Rimal H, Lee SW, Lee JH, Oh TJ. 2015. Understanding of real alternative redox partner of Streptomyces peucetius DoxA: prediction and validation using in silico and in vitro analyses. Arch. Biochem. Biophys. 585: 64-74.   DOI