Browse > Article
http://dx.doi.org/10.4014/jmb.1801.01044

Feasibility of Bioethanol Production from Cider Waste  

Seluy, Lisandro G. (Departamento de Medio Ambiente. Facultad de Ingenieria y Ciencias Hidricas. Universidad Nacional del Litoral)
Comelli, Raul N. (Departamento de Medio Ambiente. Facultad de Ingenieria y Ciencias Hidricas. Universidad Nacional del Litoral)
Benzzo, Maria T. (Departamento de Medio Ambiente. Facultad de Ingenieria y Ciencias Hidricas. Universidad Nacional del Litoral)
Isla, Miguel A. (Departamento de Medio Ambiente. Facultad de Ingenieria y Ciencias Hidricas. Universidad Nacional del Litoral)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.9, 2018 , pp. 1493-1501 More about this Journal
Abstract
Wastewater from cider factories (losses during transfers, products discarded due to quality policies, and products returned from the market) exhibits a Chemical Oxygen Demand greater than $170,000mg\;O_2/l$, mainly due to the ethanol content and carbohydrates that are added to obtain the finished product. These effluents can represent up to 10% of the volume of cider produced, and they must be treated to meet environmental regulations. In this work, a process was developed, based on alcoholic fermentation of the available carbohydrates present in ciders. The impact of inhibitors at different pH, size and reuse of inoculums and different nutrient supplementation on the ethanol yield were evaluated. The use of a 0.5 g/l yeast inoculum and corn steep water as the nutrient source allowed for depletion of the sugars in less than 48 h, which increased the content of ethanol to more than 70 g/l.
Keywords
Cider waste; bioethanol production; preservatives; corn steep water;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tonelli D. 2009. Methods for Determining Ethanol in Beer. In: Beer in Health and Disease Prevention. pp. 1055-1065. 1st Edition. Elsevier inc, Amsterdam.
2 Walker GM. 2004. Metals in yeast fermentation processes. Adv. Appl. Microbiol. 54: 197-229.
3 Li H, Luo MML, Zhang R, Pei H, Hu W. 2012. Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tándem mass spectrometry-based metabolomics approach. Int. J. Biochem. Cell Biol. 44: 1087-1096.   DOI
4 Divol B, Du Toit M, Duckitt E. 2012. Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Appl. Microbiol. Biotechnol. 95: 601-613.   DOI
5 Mira NP, Teixeira MC, Sa-Correia I. 2010. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS 14: 525-540.   DOI
6 Vieira EF, Carvalho J, Pinto E, Cunha S, Almeida AA, Ferreira IMPLVO. 2016. Nutritive value, antioxidant activity and phenolic compounds profile of brewer's spent yeast extract. J. Food Compos. Anal. 52: 44-51.   DOI
7 Gutierrez A, Chiva R, Sancho M, Beltran G, Arroyo-Lopez F, Guillamon J. 2012. Nitrogen requirements of commercial wine yeast strains during fermentation of a synthetic grape must. Food Microbiol. 31: 25-32.   DOI
8 Saha BC. 2006. A low-cost medium for mannitol production by Lactobacillus intermedius NRRL B-3693. Appl. Microbiol. Biotechnol. 72: 676-680.   DOI
9 Jin M, Gunawan C, Uppugundla N, Balan V, Dale BE. 2012. A novel integrated biological process for cellulosic ethanol production featuring high ethanol productivity, enzyme recycling and yeast cells reuse. Energy Environ. Sci. 5: 7168-7175.   DOI
10 Lin Y, Zhang W, Li C, Sakakibara K, Tanaka S, Kong H. 2012. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 47: 395-401.   DOI
11 Du Toit WJ, Pretorius IS, Lonvaud-Funel A. 2005. The effect of sulphur dioxide and oxygen on the viability and culturability of a strain of Acetobacter pasteurianus and a strain of Brettanomyces bruxellensis isolated from wine. J. Appl. Microbiol. 98: 862-871.   DOI
12 Herrero M, Garcia LA, Diaz M. 2003. The effect of SO2 on the production of ethanol, acetaldehyde, organic acids and flavor volatiles during industrial cider fermentation. J. Agric. Food Chem. 51: 3455-3459.   DOI
13 Reddy LVA, Reddy OVS. 2011. Effect of fermentation conditions on yeast growth and volatile composition of wine produced from mango (Mangifera indica L.) fruit juice. Food Bioprod. Process. 89: 487-491.   DOI
14 Benjaphokee S, Hasegawa D, Yokota D, Asvarak T, Auesukaree C, Sugiyama M, et al. 2012. Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol. New Biotechnol. 29: 379-386.   DOI
15 Jones RP, Greenfield PF. 1987. Specific and non-specific inhibitory effects of ethanol on yeast growth. Enzyme Microb. Technol. 9: 334-338.   DOI
16 Lima-Costa ME, Tavares C, Raposo S, Rodrigues B, Peinado JM. 2012. Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fedbatch. J. Ind. Microbiol. Biotechnol. 39: 789-797.   DOI
17 Luo H, Niu Y, Duan C, Sub H, Yan G. 2017. A pH control strategy for increased ${\beta}$-carotene production during batch fermentation by recombinant industrial wine yeast. Proc. Biochem. 48: 195-200.
18 Kelkar S, Dolan K. 2012. Modelling the effects of initial nitrogen content and temperature on fermentation kinetics of hard cider. J .Food. Eng. 109: 588-596.   DOI
19 Rausch KD, Thompson CI, Belyea RL, Tumbleson ME. 2003. Characterization of light gluten and light steep water from a corn wet milling plant. Bioresour. Technol. 90: 49-54.   DOI
20 Mahadevaswamy Usha R, Rastogi NK, Anu Appaiah KA. 2011. Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract - an agro-industry waste. J. Microbiol. Biotechnol. 21: 739-745   DOI
21 Xiao X, Hou Y, Liu Y, Zhao H, Dong L, Du J, et al. 2013. Classification and analysis of corn steep liquor by UPLC/Q-TOF MS and HPLC. Talanta 107: 344-348.   DOI
22 Khattak WA, Jung TK, Ha H, Ul-Islam M, Kang MK, Park JK. 2013. Enhanced production of bioethanol from waste of beer fermentation broth at high temperature through consecutive batch strategy by simultaneous saccharification and fermentation. Enzyme Microb. Technol. 53: 322-330.   DOI
23 Comelli RN, Seluy LG, Isla MA. 2016. Optimization of a low-cost defined medium for alcoholic fermentation - a case study for potential application in bioethanol production from industrial wastewaters. New Biotechnol. 33: 107-115.   DOI
24 Perez-Bibbins B, Torrado-Agrasar A, Perez-Rodriguez N, Aguilar-Uscanga MG, Dominguez JM. 2015. Evaluation of the liquid, solid and total fractions of beer, cider and wine lees as economic nutrient for xylitol production. J. Chem. Technol. Biotechnol. 90:1027-39.   DOI
25 Eaton AD, Clescerl LS, Greenberg AE. 2000. Standard methods for the examination of water and wastewater, 20th ed. American Public Health Association, USA.
26 Lie S. 1973. The ebc-ninhydrin method for determination of free alpha amino nitrogen. J. Inst. Brew. 79: 37-41.   DOI
27 Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
28 Coton E, Coton M, Guichard H. 2016. Cider (Cyder; Hard Cider): The Product and Its Manufacture In: Encyclopedia of Food and Health, pp. 119-128. Elsevier Ltd, Amsterdam.
29 Akbas MY, Stark BC. 2016. Recent trends in bioethanol production from food processing byproducts. J. Ind. Microbiol. Biotechnol. 43: 1593-1609.   DOI
30 Isla MA, Comelli RN, Seluy LG. 2013. Wastewater from the soft drinks industry as a source for bioethanol production. Bioresour. Technol. 136: 140-147.   DOI
31 Seluy LG, Isla MA. 2014. A process to treat high-strength brewery wastewater via ethanol recovery and vinasse fermentation. Ind. Eng. Chem. Res. 53: 17043-17050.   DOI
32 Rodrigues B, Peinado JM, Raposo S, Constantino A, Quintas C, Lima-Costa ME. 2016. Kinetic and energetic parameters of carob wastes fermentation by Saccharomyces cerevisiae: crabtree effect, ethanol toxicity, and invertase repression. J. Microbiol. Biotechnol. 25: 837-844.
33 Arroyo-Lopez FN, Bautista-Gallego J, Duran-Quintana MC, Garrido-Fernandez A. 2008. Modeling the inhibition of sorbic and benzoic acids on a native yeast cocktail from table olives. Food Microbiol. 25: 566-574.   DOI
34 Chandra M, Oro I, Ferreira-Dias S, Malfeito-Ferreira M. 2015. Effect of ethanol, sulfur dioxide and glucose on the growth of wine spoilage yeasts using response surface methodology. PLoS One https//doi:10.1371/journal.pone.0128702.   DOI