Browse > Article
http://dx.doi.org/10.4014/jmb.1804.04060

Label-Free Rapid and Simple Detection of Exonuclease III Activity with DNA-Templated Copper Nanoclusters  

Lee, Chunghyun (Department of Nanochemistry, Gachon University)
Gang, Jongback (Department of Nanochemistry, Gachon University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.9, 2018 , pp. 1467-1472 More about this Journal
Abstract
In this study, DNA-templated copper nanoclusters (DNA-CuNCs) were used to detect exonuclease III (Exo III) activity, which is important for the diagnosis and therapy of several diseases. The results of this study showed that Exo III was affected by the concentrations of magnesium ions and sodium ions, and its optimal conditions for cleavage were $5mM\;Mg^{2+}$ and less than $25mM\;Na^+$. With a blunt-end DNA, more than 98% of DNA was digested by Exo III. As expected, with two or four cytosines in the terminal position of a 4-base overhanging DNA such as 5'-GGCC-3' and 5'-CCCC-3', there was little cleavage by Exo III compared with a blunt-end DNA.
Keywords
Exonuclease III; biosensors; DNA-templated copper nanoclusters (DNA-CuNCs);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tan W, Wang K, Drake TJ. 2004. Molecular beacons. Curr. Opin. Chem. Biol. 8: 547-553.   DOI
2 Tang Z, Liu P, Ma C, Yang X, Wang K, Tan W, et al. 2011. Molecular beacon based bioassay for highly sensitive and selective detection of nicotinamide adenine dinucleotide and the activity of alanine aminotransferase. Anal. Chem. 83: 2505-2510.   DOI
3 Dai N, Kool ET. 2011. Fluorescent DNA-based enzyme sensors. Chem. Soc. Rev. 40: 5756-5770.   DOI
4 Wang XP, Yin BC, Ye BC. 2013. A novel fluorescence probe of dsDNA-templated copper nanoclusters for quantitative detection of microRNAs. RSC Adv. 3: 8633-8636.   DOI
5 Richards CI, Choi S, Hsiang JC, Antoku Y, Vosch T, Bongiorno A, et al. 2008. Oligonucleotide-stabilized Ag nanoclusters fluorophores. J. Am. Chem. Soc. 130: 5038-5039.   DOI
6 Yeh H, Sharma J, Han JJ, Martinez JS, Werner JH, 2010. A DNA-silver nanoclusters probe that fluoresces upon hybridization. Nano Lett. 10: 3106-3110.   DOI
7 Gwinn EG, Neill P, Guerrero A, Bouwmeester D, Fygenson DDK. 2008. Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv. Mater. 20: 279-283.   DOI
8 Ma K, Cui Q, Shao Y, Wu F, Xu S, Liu G, 2012. Emission modulation of DNA-templated fluorescent silver nanoclusters by divalent magnesium ion. J. Nanosci. Nanotechnol. 12: 861-869.   DOI
9 Xu H, Suslick KS. 2010. Water-soluble fluorescent silver nanoclusters. Adv. Mater. 22: 1078-1082.   DOI
10 Han B, Wang E. 2011. Oligonucleotide-stabilized fluorescent silver nanoclusters for sensitive detection of biothiols in biological fluids. Biosens. Bioelectron. 26: 2585-2589.   DOI
11 Jia X, Li J, Han L, Ren J, Yang X, Wang E. 2012. DNA-hosted copper nanoclusters for fluorescent identification of single nucleotide polymorphisms. ACS Nano 6: 3311-3317.   DOI
12 Qing T, Qing Z, Mao Z, He X, Xu F, Wen L, et al. 2014. dsDNA-templated fluorescent copper nanoparticles: poly(AT-TA)-dependent formation. RSC Adv. 4: 61092-61095.   DOI
13 Zhou F, Cui X, Shang A, Lian J, Yang L, Jin Y, et al. 2017. Fluorometric determination of the activity and inhibition of terminal deoxynucleotidyl transferase via in-situ formation of copper nanoclusters using enzymatically-generated DNA as template. Microchim. Acta 184: 773-779.   DOI
14 Zhao H, Dong J, Zhou F, Li B, 2017. One facile fluorescence strategy for sensitive detection of endonuclease activity using DNA-templated copper nanoclusters as signal indicators. Sens. Actuators B Chem. 238: 828-833.   DOI
15 Song Q, Shi Y, He D, Xu S, Ouyang J, 2015. Sequence-dependent dsDNA-templated formation of fluorescent copper nanoparticles. Chem. Eur. J. 21: 2417-2422.   DOI
16 Mol CD, Kuo CF, Thayer MM, Cunningham RP, Tainer JA. 1995. Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature 374: 381-386.   DOI
17 Katayanagi K, Miyagawa M, Matsushima M, Ishikawa M, Kanaya S, Ikehara M, et al. 1990. Three-dimensional structure of ribonuclease H from E. coli. Nature 347: 306-309.   DOI
18 Black CB, Cowan JA, 1994. Magnesium activation of ribonuclease H. evidence for one catalytic metal ion. Inorg. Chem. 33: 5805-5808.   DOI
19 Tomb JF, Barcak GJ. 1989. Regulating the 3'-5' activity of exonuclease III by varying the sodium chloride concentration. BioTechniques 7: 932-933.
20 Ge J, Dong Z-Z, Bai D-M, Zhang L, Hu Y-L, Ji D-Y, et al, 2017. A novel label-free fluorescent molecular beacon for the detection of 30-50 exonuclease enzymaticactivity using DNA-templated copper nanoclusters. New J. Chem. 41: 9718-9723.   DOI
21 Paul TT, Gellert M. 1998. The 3' to 5' exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol. Cell 1: 969-979.   DOI
22 Linxweiler W, Horz W, 1982. Sequence specificity of exonuclease III from E. coli. Nucleic Acids Res. 10: 4845-4859.   DOI
23 Gammon DB, Evans DH. 2009. The 3'- to -5' exonuclease activity of vaccinia virus DNA polymerase is essential and plays a role in promoting virus genetic recombination. J. Virol. 83: 4236-4250.   DOI
24 Song L, Chaudhuri M, Knopf CW, Parris DS. 2004. Contribution of the 3'- to 5'-exonuclease activity of herpes simplex virus type 1 DNA polymerase to the fidelity of DNA synthesis. J. Biol. Chem. 279: 18535-18543.   DOI
25 Shevelev LV, Huescher U. 2002. The 3' 5' exonucleases. Nat. Rev. Mol. Cell Biol. 3: 364-376.   DOI
26 Wu X, Chen J, Zhao JX. 2014. Ultrasensitive detection of 3'-5' exonuclease enzymatic activity using molecular beacons, Analyst 139: 1081-1087.   DOI
27 Hoheisel JD. 1993. On the activities of Escherichia coli exonuclease III. Anal. Biochem. 209: 238-246.   DOI
28 Kavanagh D, Spitzer D, Kothari PH, Shaikh A, Liszewski MK, Richards A, Atkinson JP. 2008. New roles for the major human 3'-5' exonuclease TREX1 in human disease. Cell Cycle 7: 1718-1725.   DOI
29 Leung CH, Chan DS, Man BY, Wang CJ, Lam W, Cheng YC, Fong WF, et al. 2011. Simple and convenient G-quadruplex-based turn-on fluorescence assay for 3' ${\rightarrow}$ 5' exonuclease activity. Anal. Chem. 83: 463-466.   DOI
30 Brucet M, Querol-Audi J, Bertlik K, Lioberas J, Fita I, Celada A. 2008. Structural and biochemical studies of TREX1 inhibition by metals. Identification of a new active histidine conserved in DEDDh exonucleases. Protein Sci. 17: 2059-2069.   DOI
31 Chen Y, Yang CJ, Wu Y, Conlon P, Kim Y, Lin H, Tan W. 2008. Light-switching excimer beacon assays for ribonuclease H kinetic study. Chem. Biochem. 9: 355-359.