Browse > Article
http://dx.doi.org/10.4014/jmb.1711.11040

Functional Characterization of an Exopolysaccharide Produced by Bacillus sonorensis MJM60135 Isolated from Ganjang  

Palaniyandi, Sasikumar Arunachalam (Department of Biotechnology, Mepco Schlenk Engineering College)
Damodharan, Karthiyaini (Center for Nutraceutical and Pharmaceutical Materials, College of Natural Science, Myongji University)
Suh, Joo-Won (Center for Nutraceutical and Pharmaceutical Materials, College of Natural Science, Myongji University)
Yang, Seung Hwan (Department of Biotechnology, Chonnam National University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.5, 2018 , pp. 663-670 More about this Journal
Abstract
The present study focused on the production, characterization, and in vitro prebiotic evaluation of an exopolysaccharides (EPS) from Bacillus sonorensis MJM60135 isolated from ganjang (fermented soy sauce). Strain MJM60135 showed the highest production ($8.4{\pm}0.8g/l$) of EPSs compared with other isolates that were screened for EPS production based on ropy culture morphology. Furthermore, MJM60135 was cultured in 5 L of medium and the EPS was extracted by ethanol precipitation. The emulsification activity of the EPS was higher in toluene than in o-xylene. Fourier transform infrared spectroscopy analysis showed the presence of hydroxyl and carboxyl groups and glycosidic linkages. The isolated EPS contained mannose and glucose, as observed by thin-layer chromatography analysis of the EPS hydrolysate. Lactic acid bacteria (LAB) and pathogenic E. coli K99 and Salmonella enterica serovar Typhimurium were tested for their growth utilizing the EPS from B. sonorensis MJM60135 as the sole carbon source for its possible use as a prebiotic. All the tested LAB exhibited growth in the EPS-supplied medium compared with glucose as carbon source, whereas the pathogenic strains did not grow in the EPS-supplied medium. These findings indicate that the EPS from B. sonorensis MJM60135 has potential application in the bioremediation of hydrocarbons and could also be used as a prebiotic.
Keywords
Bacillus sonorensis; exopolysaccharide; prebiotic; lactic acid bacteria;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Song Y-R, Jeong D-Y, Baik S-H. 2013. Optimal production of exopolysaccharide by Bacillus licheniformis KS-17 isolated from kimchi. Food Sci. Biotechnol. 22: 417-423.   DOI
2 Spano A, Gugliandolo C, Lentini V, Maugeri TL, Anzelmo G, Poli A, et al. 2013. A novel EPS-producing strain of Bacillus licheniformis isolated from a shallow vent off Panarea island (Italy). Curr. Microbiol. 67: 21-29.
3 Sayem SM, Manzo E, Ciavatta L, Tramice A, Cordone A, Zanfardino A, et al. 2011. Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microb. Cell Fact. 10: 74.   DOI
4 Liu C, Lu J, Lu L, Liu Y, Wang F, Xiao M. 2010. Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8-37-0-1. Bioresour. Technol. 101: 5528-5533.   DOI
5 Bren A, Park JO, Towbin BD, Dekel E, Rabinowitz JD, Alon U. 2016. Glucose becomes one of the worst carbon sources for E. coli on poor nitrogen sources due to suboptimal levels of cAMP. Sci. Rep. 6: 24834.   DOI
6 Wang X, Yuan Y, Wang K, Zhang D, Yang Z, Xu P. 2007. Deproteinization of gellan gum produced by Sphingomonas paucimobilis ATCC 31461. J. Biotechnol. 128: 403-407.   DOI
7 Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC. 2005. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 339: 69-72.   DOI
8 Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617.   DOI
9 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI
10 Fusconi R, Nascimento Assuncao RM, de Moura Guimaraes R, Rodrigues Filho G, Eduardo da Hora Machado A. 2010. Exopolysaccharide produced by Gordonia polyisoprenivorans CCT 7137 in GYM commercial medium and sugarcane molasses alternative medium: FT-IR study and emulsifying activity. Carbohydr. Polym. 79: 403-408.   DOI
11 Wang Y, Ahmed Z, Feng W, Li C, Song S. 2008. Physicochemical properties of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir. Int. J. Biol. Macromol. 43: 283-288.   DOI
12 Nikonenko NA, Buslov DK, Sushko NI, Zhbankov RG. 2000. Investigation of stretching vibrations of glycosidic linkages in disaccharides and polysaccharides with use of IR spectra deconvolution. Biopolymers 57: 257-262.   DOI
13 Yin WF, Tung HJ, Sam CK, Koh CL, Chan KG. 2012. Quorum quenching Bacillus sonorensis isolated from soya sauce fermentation brine. Sensors 12: 4065-4073.   DOI
14 Chettri R, Bhutia MO, Tamang JP. 2016. Poly-gamma-glutamic acid (PGA)-producing Bacillus species isolated from Kinema, Indian fermented soybean food. Front. Microbiol. 7: 971.
15 Han Y, Liu E, Liu L, Zhang B, Wang Y, Gui M, et al. 2015. Rheological, emulsifying and thermostability properties of two exopolysaccharides produced by Bacillus amyloliquefaciens LPL061. Carbohydr. Polym. 115: 230-237.   DOI
16 Lee IY, Seo WT, Kim GJ, Kim MK, Ahn SG, Kwon GS, et al. 1997. Optimization of fermentation conditions for production of exopolysaccharide by Bacillus polymyxa. Bioprocess Eng. 16: 71-75.   DOI
17 Singh RP, Shukla MK, Mishra A, Kumari P, Reddy CRK, Jha B. 2011. Isolation and characterization of exopolysaccharides from seaweed associated bacteria Bacillus licheniformis. Carbohydr. Polym. 84: 1019-1026.   DOI
18 Larpin S, Sauvageot N, Pichereau V, Laplace JM, Auffray Y. 2002. Biosynthesis of exopolysaccharide by a Bacillus licheniformis strain isolated from ropy cider. Int. J. Food Microbiol. 77: 1-9.   DOI
19 Manca MC, Lama L, Improta R, Esposito E, Gambacorta A, Nicolaus B. 1996. Chemical composition of two exopoly-saccharides from Bacillus thermoantarcticus. Appl. Environ. Microbiol. 62: 3265-3269.
20 Ron EZ, Rosenberg E. 2001. Natural roles of biosurfactants. Environ. Microbiol. 3: 229-236.   DOI
21 Nicolaus B, Panico A, Manca MC, Lama L, Gambacorta A, Maugeri T, et al. 2000. A thermophilic Bacillus isolated from an Eolian shallow hydrothermal vent able to produce exopolysaccharides. Syst. Appl. Microbiol. 23: 426-432.   DOI
22 Arena A, Maugeri TL, Pavone B, Iannello D, Gugliandolo C, Bisignano G. 2006. Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. Int. Immunopharmacol. 6: 8-13.   DOI
23 Maugeri TL, Gugliandolo C, Caccamo D, Panico A, Lama L, Gambacorta A, et al. 2002. A halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharide. Biotechnol. Lett. 24: 515-519.   DOI
24 Nwodo UU, Green E, Okoh AI. 2012. Bacterial exopoly- saccharides: functionality and prospects. Int. J. Mol. Sci. 13: 14002-14015.   DOI
25 Prajapat J, Patel A. 2013. Food and health applications of exopolysaccharides produced by lactic acid bacteria. Adv. Dairy Res. 1: 1-8.   DOI
26 Grosu-Tudor S-S, Zamfir M, Meullen RVD, Falony G, Vuyst LD. 2013. Prebiotic potential of some exopolysaccharides produced by lactic acid bacteria. Rom. Biotechnol. Lett. 18: 8666-8676.
27 De Vuyst L, Degeest B. 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23: 153-177.   DOI
28 Liu J, Luo J, Ye H, Zeng X. 2012. Preparation, antioxidant and antitumor activities in vitro of different derivatives of levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food Chem. Toxicol. 50: 767-772.   DOI
29 Chen Y-T, Yuan Q, Shan L-T, Lin M-A, Cheng D-Q, Li C-Y. 2013. Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus. Oncol. Lett. 5: 1787-1792.   DOI
30 Rasulov MM, Kuznetsov IG, Slutskii LI, Velikaia MV, Zabozlaev AG, Voronkov MG. 1993. The ulcerostatic effect of the exopolysaccharide from Bacillus mucilaginosus and its possible mechanisms. Biull. Eksp. Biol. Med. 116: 504-505.
31 Uchida M, Ishii I, Inoue C, Akisato Y, Watanabe K, Hosoyama S, et al. 2010. Kefiran reduces atherosclerosis in rabbits fed a high cholesterol diet. J. Atheroscler. Thromb. 17: 980-988.   DOI
32 Bello FD, Walter J, Hertel C, Hammes WP. 2001. In vitro study of prebiotic properties of levan-type exopolysaccharides from lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. Syst. Appl. Microbiol. 24: 232-237   DOI
33 Kodali VP, Perali RS, Sen R. 2011. Purification and partial elucidation of the structure of an antioxidant carbohydrate biopolymer from the probiotic bacterium Bacillus coagulans RK-02. J. Nat. Prod. 74: 1692-1697.   DOI
34 Hongpattarakere T, Cherntong N, Wichienchot S, Kolida S, Rastall RA. 2012. In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydr. Polym. 87: 846-852.   DOI
35 Kodali VP, Sen R. 2008. Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnol. J. 3: 245-251.   DOI