Browse > Article
http://dx.doi.org/10.4014/jmb.1708.08019

Exploring the Metabolomic Responses of Bacillus licheniformis to Temperature Stress by Gas Chromatography/Mass Spectrometry  

Dong, Zixing (College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology)
Chen, Xiaoling (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology)
Cai, Ke (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology)
Chen, Zhixin (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology)
Wang, Hongbin (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology)
Jin, Peng (College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology)
Liu, Xiaoguang (College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology)
Permaul, Kugenthiren (Department of Biotechnology & Food Technology, Faculty of Applied Sciences, Durban University of Technology)
Singh, Suren (Department of Biotechnology & Food Technology, Faculty of Applied Sciences, Durban University of Technology)
Wang, Zhengxiang (College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.3, 2018 , pp. 473-481 More about this Journal
Abstract
Owing to its high protein secretion capacity, simple nutritional requirements, and GRAS (generally regarded as safe) status, Bacillus licheniformis is widely used as a host for the industrial production of enzymes, antibiotics, and peptides. However, as compared with its close relative Bacillus subtilis, little is known about the physiology and stress responses of B. licheniformis. To explore its temperature-stress metabolome, B. licheniformis strains ATCC 14580 and B186, with respective optimal growth temperatures of $42^{\circ}C$ and $50^{\circ}C$, were cultured at $42^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$ and their corresponding metabolic profiles were determined by gas chromatography/mass spectrometry and multivariate statistical analyses. It was found that with increased growth temperatures, the two B. licheniformis strains displayed elevated cellular levels of proline, glutamate, lysine, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, and octadecanoic acid, and decreased levels of glutamine and octadecenoic acid. Regulation of amino acid and fatty acid metabolism is likely to be associated with the evolution of protective biochemical mechanisms of B. licheniformis. Our results will help to optimize the industrial use of B. licheniformis and other important Bacillus species.
Keywords
Bacillus licheniformis; gas chromatography/mass spectrometry; temperature-stress metabolome; amino acid and fatty acid metabolism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Blaby IK, Lyons BJ, Wroclawska-Hughes E, Phillips GC, Pyle TP, Chamberlin SG, et al. 2012. Experimental evolution of a facultative thermophile from a mesophilic ancestor. Appl. Environ. Microbiol. 78: 144-155.   DOI
2 Sola-Penna M, Meyer-Fernandes JR. 1998. Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: why is trehalose more effective than other sugars? Arch. Biochem. Biophys. 360: 10-14.   DOI
3 Voigt B, Schroeter R, Schweder T, Jurgen B, Albrecht D, van Dijl JM, et al. 2014. A proteomic view of cell physiology of the industrial workhorse Bacillus licheniformis. J. Biotechnol. 191: 139-149.   DOI
4 Schallmey M, Singh A, Ward OP. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17.   DOI
5 Schroeter R, Voigt B, Jürgen B, Methling K, Pöther DC, Schäfer H, et al. 2011. The peroxide stress response of Bacillus licheniformis. Proteomics 11: 2851-2866.   DOI
6 Putri SP, Yamamoto S, Tsugawa H, Fukusaki E. 2013. Current metabolomics: technological advances. J. Biosci. Bioeng. 116: 9-16.
7 Wang H, Chen Z, Yang J, Liu Y, Lu F. 2015. Optimization of sample preparation for the metabolomics of Bacillus licheniformis by GCMS, pp. 579-588. In Zhang T-C, Nakajima M (eds.). Advances in Applied Biotechnology. Proceedings of the 2nd International Conference on Applied Biotechnology (ICAB 2014), Vol. I. Springer, Berlin-Heidelberg.
8 Niu D, Zuo Z, Shi GY, Wang ZX. 2009. High yield recombinant thermostable $\alpha$-amylase production using an improved Bacillus licheniformis system. Microb. Cell Fact. 8: 611-631.
9 Dong Z, Chen Z, Wang H, Tian K, Jin P, Liu X, et al. 2017. Tandem mass tag-based quantitative proteomics analyses reveal the response of Bacillus licheniformis to high growth temperatures. Ann. Microbiol. 67: 501-510.   DOI
10 Stulke J, Hanschke R, Hecker M. 1993. Temporal activation of $\beta$-glucanase synthesis in Bacillus subtilis is mediated by the GTP pool. Microbiology 139: 2041-2045.
11 Halket JM, Waterman D, Przyborowska AM, Patel RK, Fraser PD, Bramley PM. 2005. Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J. Exp. Bot. 56: 219-243.   DOI
12 Denkert C, Budczies J, Kind T, Weichert W, Tablack P, Sehouli J, et al. 2006. Mass spectrometry-based metabolic profiling reveals different metabolite patterns in invasive ovarian carcinomas and ovarian borderline tumors. Cancer Res. 66: 10795-10804.   DOI
13 Hoffmann T, Bremer E. 2011. Protection of Bacillus subtilis against cold stress via compatible-solute acquisition. J. Bacteriol. 193: 1552-1562.   DOI
14 Bundy JG, Willey TL, Castell RS, Ellar DJ, Brindle KM. 2005. Discrimination of pathogenic clinical isolates and laboratory strains of Bacillus cereus by NMR-based metabolomic profiling. FEMS Microbiol. Lett. 242: 127-136.   DOI
15 Bijlsma S, Bobeldijk I, Verheij ER, Ramaker R, Kochhar S, Macdonald IA, et al. 2006. Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. Anal. Chem. 78: 567-574.   DOI
16 Calik P, Calik G, Ozdamar TH. 2001. Bioprocess development for serine alkaline protease production: a review. Rev. Chem. Eng. 17: 1-62.
17 Neelon K, Schreier HJ, Meekins H, Robinson PM, Roberts MF. 2005. Compatible solute effects on thermostability of glutamine synthetase and aspartate transcarbamoylase from Methanococcus jannaschii. Biochim. Biophys. Acta 1753: 164-173.   DOI
18 Bursy J, Pierik AJ, Pica N, Bremer E. 2007. Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J. Biol. Chem. 282: 31147-31155.   DOI
19 Diamant S, Eliahu N, Rosenthal D, Goloubinoff P. 2001. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem. 276: 39586-39591.   DOI
20 Zaprasis A, Hoffmann T, Wunsche G, Florez LA, Stulke J, Bremer E. 2014. Mutational activation of the RocR activator and of a cryptic rocDEF promoter bypass loss of the initial steps of proline biosynthesis in Bacillus subtilis. Environ. Microbiol. 16: 701-717.   DOI
21 Galili G, Tang G, Zhu X, Gakiere B. 2001. Lysine catabolism: a stress and development super-regulated metabolic pathway. Curr. Opin. Plant Biol. 4: 261-266.   DOI
22 Suutari M, Laakso S. 1994. Microbial fatty acids and thermal adaptation. Crit. Rev. Microbiol. 20: 285-328.   DOI
23 Los DA, Mironov KS, Allakhverdiev SI. 2013. Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynth. Res. 116: 489-509.   DOI
24 Mansilla MC, de Mendoza D. 2005. The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Arch. Microbiol. 183: 229-235.   DOI
25 Sikorski J, Brambilla E, Kroppenstedt RM, Tindall BJ. 2008. The temperature-adaptive fatty acid content in Bacillus simplex strains from 'Evolution Canyon', Israel. Microbiology 154: 2416-2426.   DOI
26 Schroeter R, Hoffmann T, Voigt B, Meyer H, Bleisteiner M, Muntel J, et al. 2013. Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges. PLoS One 8: e80956.   DOI
27 Voigt B, Schroeter R, Jürgen B, Albrecht D, Evers S, Bongaerts J, et al. 2013. The response of Bacillus licheniformis to heat and ethanol stress and the role of the SigB regulon. Proteomics 13: 2140-2161.   DOI
28 Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, et al. 2004. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol. 5: r77.   DOI
29 Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, et al. 2004. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J. Mol. Microbiol. Biotechnol. 7: 204-211.   DOI
30 Nielsen AK, Breuner A, Krzystanek M, Andersen JT, Poulsen TA, Olsen PB, et al. 2010. Global transcriptional analysis of Bacillus licheniformis reveals an overlap between heat shock and iron limitation stimulon. J. Mol. Microbiol. Biotechnol. 18: 162-173.   DOI
31 Song H, Wang L, Liu HL, Wu XB, Wang HS, Liu ZH, et al. 2011. Tissue metabolomic fingerprinting reveals metabolic disorders associated with human gastric cancer morbidity. Oncol. Rep. 26: 431-438.
32 Denery JR, Nunes AA, Hixon MS, Dickerson TJ, Janda KD. 2010. Metabolomics-based discovery of diagnostic biomarkers for onchocerciasis. PLoS Negl. Trop. Dis. 4: e834.   DOI
33 Ye Y, Zhang L, Hao F, Zhang J, Wang Y, Tang H. 2012. Global metabolomic responses of Escherichia coli to heat stress. J. Proteome Res. 11: 2559-2566.   DOI
34 Nicholson JK, Connelly J, Lindon JC, Holmes E. 2002. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1: 153-161.   DOI