Browse > Article
http://dx.doi.org/10.4014/jmb.1710.10038

Isolation and Evaluation of Bacillus Strains for Industrial Production of 2,3-Butanediol  

Song, Chan Woo (Research and Development Center, GS Caltex Corporation)
Rathnasingh, Chelladurai (Research and Development Center, GS Caltex Corporation)
Park, Jong Myoung (Research and Development Center, GS Caltex Corporation)
Lee, Julia (Research and Development Center, GS Caltex Corporation)
Song, Hyohak (Research and Development Center, GS Caltex Corporation)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.3, 2018 , pp. 409-417 More about this Journal
Abstract
Biologically produced 2,3-butanediol (2,3-BDO) has diverse industrial applications. In this study, schematic isolation and screening procedures were designed to obtain generally regarded as safe (GRAS) and efficient 2,3-BDO producers. Over 4,000 candidate strains were isolated by pretreatment and enrichment, and the isolated Bacillus strains were further screened by morphological, biochemical, and genomic analyses. The screened strains were then used to test the utilization of the most common carbon (glucose, xylose, fructose, sucrose) and nitrogen (yeast extract, corn steep liquor) sources for the economical production of 2,3-BDO. Two-stage fed-batch fermentation was finally carried out to enhance 2,3-BDO production. In consequence, a newly isolated Bacillus licheniformis GSC3102 strain produced 92.0 g/l of total 2,3-BDO with an overall productivity and yield of 1.40 g/l/h and 0.423 g/g glucose, respectively, using a cheap and abundant nitrogen source. These results strongly suggest that B. licheniformis, which is found widely in nature, can be used as a host strain for the industrial fermentative production of 2,3-BDO.
Keywords
2,3-Butanediol; Bacillus licheniformis; isolation; screening; fermentation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bialkowska AM. 2016. Strategies for efficient and economical 2,3-butanediol production: new trends in this field. World J. Microbiol. Biotechnol. 32: 200.   DOI
2 Choi S, Song CW, Shin JH, Lee SY. 2015. Biorefineries for the production of top building block chemicals and their derivatives. Metab. Eng. 28: 223-239.   DOI
3 Bai F, Dai L, Fan J, Truong N, Rao B, Zhang L, et al. 2015. Erratum to: Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production. J. Ind. Microbiol. Biotechnol. 42: 977.   DOI
4 Rahman MS, Xu CC, Ma K, Nanda M, Qin W. 2017. High production of 2,3-butanediol by a mutant strain of the newly isolated Klebsiella pneumoniae SRP2 with increased tolerance towards glycerol. Int. J. Biol. Sci. 13: 308-318.   DOI
5 Zhang CY, Peng XP, Li W, Guo XW, Xiao DG. 2014. Optimization of 2,3-butanediol production by Enterobacter cloacae in simultaneous saccharification and fermentation of corncob residue. Biotechnol. Appl. Biochem. 61: 501-509.
6 Li L, Zhang L, Li K, Wang Y, Gao C, Han B, et al. 2013. A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical. Biotechnol. Biofuels 6: 123.
7 Hassler T, Schieder D, Pfaller R, Faulstich M, Sieber V. 2012. Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresour. Technol. 124: 237-244.   DOI
8 Yang T, Rao Z, Zhang X, Lin Q, Xia H, Xu Z, et al. 2011. Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens. J. Basic Microbiol. 51: 650-658.
9 Kallbach M, Horn S, Kuenz A, Prusse U. 2017. Screening of novel bacteria for the 2,3-butanediol production. Appl. Microbiol. Biotechnol. 101: 1025-1033.   DOI
10 Bai Y, D'Aoust F, Smith DL, Driscoll BT. 2002. Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can. J. Microbiol. 48: 230-238.   DOI
11 Damgaard PH, Larsen HD, Hansen BM, Bresciani J, Jorgensen K. 1996. Enterotoxin-producing strains of Bacillus thuringiensis isolated from food. Lett. Appl. Microbiol. 23: 146-150.
12 Travers RS, Martin PA, Reichelderfer CF. 1987. Selective process for efficient isolation of soil Bacillus spp. Appl. Environ. Microbiol. 53: 1263-1266.
13 Buddingh GJ. 1974. Bergey's Manual of Determinative Bacteriology, 8th Ed. The Williams and Wilkins Company, Baltimore, MD.
14 Hollander R, Bohmann J, Grewing B. 1982. The intensification of the Voges-Proskauer-reaction by fumarate. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 252: 316-323.
15 Chevenet F, Brun C, Banuls AL, Jacq B, Chisten R. 2006. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7: 439.   DOI
16 Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-704.   DOI
17 Park JM, Rathnasingh C, Song H. 2015. Enhanced production of (R,R)-2,3-butanediol by metabolically engineered Klebsiella oxytoca. J. Ind. Microbiol. Biotechnol. 42: 1419-1425   DOI
18 Choi JD, Jang YS, Cho JH, Seung DY, Lee SY, Papoutsakis ET, et al. 2013. Characterization and evaluation of corn steep liquid in acetone-butanol-ethanol production by Clostridium acetobutylicum. Biotechnol. Bioprocess Eng. 18: 266-271.   DOI
19 Bottone EJ. 2010. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23: 382-398.   DOI
20 Bosma EF, van de Weijer AH, van der Vlist L, de Vos WM, van der Oost J, van Kranenburg R. 2015. Establishment of markerless gene deletion tools in thermophilic Bacillus smithii and construction of multiple mutant strains. Microb. Cell Fact. 14: 99.   DOI
21 Edwards VH. 1970. The influence of high substrate concentrations on microbial kinetics. Biotechnol. Bioeng. 12: 679-712.   DOI
22 Huang HJ, Lin W, Ramaswamy S, Tschirner U. 2009. Process modeling of comprehensive integrated forest biorefinery - an integrated approach. Appl. Biochem. Biotechnol. 154: 26-37.   DOI
23 Park JM, Song H, Lee HJ, Seung D. 2013. In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production. J. Ind. Microbiol. Biotechnol. 40: 1057-1066.   DOI
24 Ge YS, Li K, Li LX, Gao C, Zhang LJ, Ma CQ, et al. 2016. Contracted but effective: production of enantiopure 2,3-butanediol by thermophilic and GRAS Bacillus licheniformis. Green Chem. 18: 4693-4703.   DOI
25 Kim DK, Park JM, Song H. 2016. Kinetic modeling of substrate and product inhibition for 2,3-butanediol production by Klebsiella oxytoca. Biochem. Eng. J. 114: 94-100.   DOI
26 Moes J, Griot M, Keller J, Heinzle E, Dunn IJ, Bourne JR. 1985. A microbial culture with oxygen-sensitive product distribution as a potential tool for characterizing bioreactor oxygen-transport. Biotechnol. Bioeng. 27: 482-489.   DOI
27 Beronio PB Jr, Tsao GT. 1993. Optimization of 2,3-butanediol production by Klebsiella oxytoca through oxygen transfer rate control. Biotechnol. Bioeng. 42: 1263-1269.   DOI
28 Fages J, Mulard D, Rouquet J, Wilhelm J. 1986. 2,3-Butanediol production from Jerusalem artichoke, Helianthus tuberosus, and by Bacillus polymyxa ATCC 12321. Optimization of kLa profile. Appl. Microbiol. Biotechnol. 25: 197-202.
29 Zeng AP, Byun TG, Posten C, Deckwer WD. 1994. Use of respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2,3-butanediol production under microaerobic conditions. Biotechnol. Bioeng. 44: 1107-1114.   DOI
30 Yang T, Rao Z, Zhang X, Lin Q, Xia H, Xu Z, Yang S. 2011. Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens. J. Basic Microbiol. 51: 650-658.   DOI
31 Nilegaonkar S, Bhosale S, Kshirsagar D, Kapadi A. 1992. Production of 2,3-butanediol from glucose by Bacillus licheniformis. World J. Microbiol. Biotechnol. 8: 378-381.
32 Li L, Li K, Wang K, Chen C, Gao C, Ma C, Xu P. 2014. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain. Bioresour. Technol. 170: 256-261.   DOI
33 Jurchescu IM, Hamann J, Zhou X, Ortmann T, Kuenz A, Prusse U, et al. 2013. Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Appl. Microbiol. Biotechnol. 97: 6715-6723.   DOI
34 Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, et al. 2010. Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl. Microbiol. Biotechnol. 85: 1751-1758.   DOI
35 Taylor MB, Juni E. 1960. Stereoisomeric specificities of 2,3-butanediol dehydrogenases. Biochim. Biophys. Acta 39: 448-457.   DOI
36 Ge L, Wu XM, Chen JW, Wu JL. 2011. A new method for industrial production of 2,3-butanediol. J. Biomater. Nanobiotechnol. 2: 335-336.   DOI
37 Ji XJ, Huang H, Ouyang PK. 2011. Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol. Adv. 29: 351-364.   DOI
38 Syu MJ. 2001. Biological production of 2,3-butanediol. Appl. Microbiol. Biotechnol. 55: 10-18.   DOI
39 Transparency Market Research. 2018. Butanediol (1,4 BDO & 2,3 BDO), 1,3 butadiene and methyl ethyl ketone (MEK) market: applications (THF, PU, PBT, SBR, ABS, NBR etc.), bio-based alternatives, downstream potential, market size and forecast, 2010-2018. Available at https://www.transparencymarketresearch.com/pressrelease/butanediol-butadiene- and-mek-market.htm.