Browse > Article
http://dx.doi.org/10.4014/jmb.1808.08052

Inhibitory Effect of Standardized Curcuma xanthorrhiza Supercritical Extract on LPS-Induced Periodontitis in Rats  

Kook, Kyo Eun (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University)
Kim, Changhee (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University)
Kang, Wonku (College of Pharmacy, Chung-Ang University)
Hwang, Jae-Kwan (Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.10, 2018 , pp. 1614-1625 More about this Journal
Abstract
Periodontitis, which is a severe inflammatory disease caused by endotoxins secreted from oral pathogens, destructs gingival tissue and alveolar bone. Curcuma xanthorrhiza, commonly called Java turmeric, has been shown to possess anti-bacterial and anti-inflammatory activities. The present study evaluated the inhibitory effect of C. xanthorrhiza supercritical extract (CXS) standardized with xanthorrhizol on lipopolysaccharide (LPS)-induced periodontitis in an animal model. LPS was topically injected into the periodontium of Sprague-Dawley rats to induce periodontitis and CXS (30 and $100mg{\cdot}kg^{-1}{\cdot}day^{-1}$) was orally administered after day 12. Histologically, CXS inhibited the collapse of gingival tissue by preventing cell infiltration. CXS significantly downregulated the expression of matrix metalloproteases (MMPs) and inflammation-related biomarkers, such as nuclear factor-kappa B ($NF-{\kappa}B$) and interleukin-1 beta ($IL-1{\beta}$) in gingival tissue. CXS also improved bone remodeling by downregulating osteoclastic transcription factors, such as nuclear factor of activated T-cells c1 (NFATc1), tartrate-resistant acid phosphatase (TRAP), and cathepsin K. In addition, CXS upregulated osteoblast differentiation-related markers, alkaline phosphate (ALP) and collagen type I alpha (COLA1). Thus, CXS can ameliorate periodontitis by inhibiting inflammation and improving bone remodeling.
Keywords
Curcuma xanthorrhiza; osteoblastogenesis; osteoclastogenesis; periodontitis; periodontal inflammation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Cekici A, Kantarci A, Hasturk H, Van Dyke TE. 2014. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol. 2000 64: 57-80.   DOI
2 Singh N, Chandel S, Singh H, Agrawal A, Savitha A. 2017. Effect of scaling & root planing on the activity of ALP in GCF & serum of patients with gingivitis, chronic and aggressive periodontitis: a comparative study. J. Oral Biol. Craniofac. Res. 2017: 123-126.
3 Hajishengallis G. 2015. Periodontitis: from microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 15: 30-44.   DOI
4 Barton MK. 2017. Evidence accumulates indicating periodontal disease as a risk factor for colorectal cancer or lymphoma. CA Cancer J. Clin. 67: 173-174.   DOI
5 Merchant AT, Virani SS. 2017. Evaluating periodontal treatment to prevent Cardiovascular disease: challenges and possible solutions. Curr. Atheroscler. Rep. 19: 4-9.   DOI
6 Harding A, Robinson S, Crean SJ, Singhrao SK. 2017. Can better management of periodontal disease delay the onset and progression of Alzheimer's disease? J. Alzheimers Dis. 2017: 337-348.
7 Hasan A, Palmer RM. 2014. A clinical guide to periodontology: pathology of periodontal disease. Br. Dent. J. 216: 457-461.   DOI
8 Chiu HC, Fu MM, Yang TS, Fu E, Chiang CY, Tu HP, et al. 2017. Effect of high glucose, Porphyromonas gingivalis lipopolysaccharide and advanced glycation end-products on production of interleukin-6/-8 by gingival fibroblasts J. Periodontal. Res. 52: 268-276.   DOI
9 Muller HD, Cvikl BB, Lussi AA, Gruber RR. 2016. Salivary pellets induce a pro-inflammatory response involving the TLR4-$NF-{\kappa}B$ pathway in gingival fibroblasts. BMC Oral Health. 17: 15-24.
10 Hienz SA, Paliwal S, Ivanovski S. 2015. Mechanisms of bone resorption in periodontitis. J. Immunol. Res. 2015: 615486.
11 Franco C, Patricia H-R, Timo S, Claudia B, Marcela H. 2017. Matrix metalloproteinases as regulators of periodontal inflammation. Int. J. Mol. Sci. 18: 440-451.   DOI
12 Maeso G, Bravo M, Bascones A. 2007. Levels of metalloproteinase-2 and-9 and tissue inhibitor of matrix metalloproteinase-1 in gingival crevicular fluid of patients with periodontitis, gingivitis, and healthy gingiva. Quintessence Int. 38: 247-252.
13 Kim B, Kim S, Chang S, Moon J, Kim Y, Hwang JK, et al. 2005. A highly selective antibacterial effect of Curcuma xanthorrhiza extract against oral pathogens and clinical effectiveness of a dentifrice containing Curcuma xanthorrhiza extract for controlling bad breath. J. Korean Acad. Oral Health. 29: 222-237.
14 Scannapieco FA. 2004. Periodontal inflammation: from gingivitis to systemic disease? Compend. Contin. Educ. Dent. 25: 16-25.
15 He X, Andersson G, Lindgren U, Li Y. 2010. Resveratrol prevents RANKL-induced osteoclast differentiation of murine osteoclast progenitor RAW 264.7 cells through inhibition of ROS production. Biophys. Res. Commun. 401: 356-362.   DOI
16 Algate K, Haynes DR, Bartold PM, Crotti TN, Cantley MD. 2016. The effects of tumour necrosis factor-$\alpha$ on bone cells involved in periodontal alveolar bone loss; osteoclasts, osteoblasts and osteocytes. J. Periodontal Res. 51: 549-566.   DOI
17 Kim JE, Kim HE, Hwang JK, Lee HJ, Kwon HK, Kim BI. 2008. Antibacterial characteristics of Curcuma xanthorrhiza extract on Streptococcus mutans biofilm. Int. J. Microbiol. 46: 228-232.
18 Mary HP, Susheela GK, Jayasree S, Nizzy A, Rajagopal B, Jeeva S. 2012. Phytochemical characterization and antimicrobial activity of Curcuma xanthorrhiza Roxb. Asian Pac. J. Trop. Biomed. 2: S637-S640.   DOI
19 Cho JY, Kim HY, Kim HM, Song HN, Hong E, Hwang JK, et al. 2017. Standardized ethanolic extract of the rhizome of Curcuma xanthorrhiza prevents murine ulcerative colitis by regulation of inflammation. J. Funct. Foods 30: 282-289.   DOI
20 Ab Halim MR, Tan M, Ismail S, Mahmud R. 2012. Standardization and phytochemical studies of Curcuma xanthorrhiza Roxb. Int. J. Pharm. Pharm. Sci. 4: 606-610.
21 Hu P, Huang P, Chen MW. 2013. Curcumin attenuates cyclooxygenase-2 expression via inhibition of the $NF-{\kappa}B$ pathway in lipopolysaccharide-stimulated human gingival fibroblasts. Cell Biol. Int. 37: 443-448.   DOI
22 Oon SF, Nallappan M, Tee TT, Shohaimi S, Kassim NK, Sa'ariwijaya MSF, et al. 2015. Xanthorrhizol: a review of its pharmacological activities and anticancer properties. Cancer Cell Int. 15: 100-114.   DOI
23 Seo T, Cha S, Kim TI, Lee JS, Woo KM. 2012. Porphyromonas gingivalis-derived lipopolysaccharide-mediated activation of MAPK signaling regulates inflammatory response and differentiation in human periodontal ligament fibroblasts. J. Microbiol. 50: 311-319.   DOI
24 Walsh MC, Choi Y. 2014. Biology of the RAN KL-RAN K-OPG system in immunity, bone, and beyond. Front. Immunol. 2014: 511-521.
25 Xu T, Wang L, Tao Y, Ji Y, Deng F, Wu XH. 2016. The function of naringin in inducing secretion of osteoprotegerin and inhibiting formation of osteoclasts. Evid. Based Complement. Alternat. Med. 2016: 8981650.
26 Ehrnhofer-Ressler MM, Fricke K, Pignitter M, Walker JM, Walker J, Rychlik M, et al. 2013. Identification of 1, 8-cineole, borneol, camphor, and thujone as anti-inflammatory compounds in a Salvia officinalis L. infusion using human gingival fibroblasts. J. Agric. Food Chem. 61: 3451-3459.   DOI
27 Rufino AT, Ribeiro M, Judas F, Salgueiro L, Lopes MC, Cavaleiro C, et al. 2014. Anti-inflammatory and chondroprotective activity of (+)-$\alpha$-pinene: structural and enantiomeric selectivity. J. Nat. Prod. 77: 264-269.   DOI
28 Lim CS, Jin DQ, Mok H, Oh SJ, Lee JU, Hwang JK, et al. 2005. Antioxidant and antiinflammatory activities of xanthorrhizol in hippocampal neurons and primary cultured microglia. J. Neurosci. Res. 82: 831-838.   DOI
29 Lee K, Chung YH, Ahn H, Kim H, Rho J, Jeong D. 2016. Selective regulation of MAPK signaling media ANKLtes R-dependent osteoclast differentiation. Int. J. Biol. Sci. 12: 235-245.   DOI
30 Ko SY. 2016. Inhibitory effect of myricetin on matrix metalloproteinase expression and activity in periodontal inflammation. Int. J. Oral Biol. 41: 163-173.   DOI
31 Li Q, Valerio MS, Kirkwood KL. 2012. MAPK usage in periodontal disease progression. J. Signal Transduct. 2012: 308943.
32 Kostenuik PJ. 2005. Osteoprotegerin and RANKL regulate bone resorption, density, geometry and strength. Curr. Opin. Pharmacol. 5: 618-625.   DOI
33 Ram VS, Parthiban, Sudhakar U, Mithradas N, Prabhakar R. 2015. Bonebiomarkers in periodontal disease: a review article. J. Ciln. Diagn. Res. 9: ZE07-ZE10.
34 Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, et al. 2002. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc. Natl. Acad. Sci. USA 99: 9445-9449.   DOI
35 Swain MV, Xue J. 2009. State of the art of Micro-CT applications in dental research. Int. J. Oral Sci. 1: 177-188.   DOI
36 Buie HR, Campbell GM, Klinck RJ, MacNeil JA, Boyd SK. 2007. Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41: 505-515.   DOI