Browse > Article
http://dx.doi.org/10.4014/jmb.1703.03063

Prevalence and Toxin Characteristics of Bacillus thuringiensis Isolated from Organic Vegetables  

Kim, Jung-Beom (Department of Food Science and Technology, Sunchon National University)
Choi, Ok-Kyung (Division of Agricultural Inspection, Gyeonggi-do Research Institute of Health and Environment)
Kwon, Sun-Mok (Division of Agricultural Inspection, Gyeonggi-do Research Institute of Health and Environment)
Cho, Seung-Hak (Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health)
Park, Byung-Jae (Department of Food Science and Biotechnology, School of Bio-convergence Science and Technology, Kangwon National University)
Jin, Na Young (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
Yu, Yong Man (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
Oh, Deog-Hwan (Department of Food Science and Biotechnology, School of Bio-convergence Science and Technology, Kangwon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.8, 2017 , pp. 1449-1456 More about this Journal
Abstract
The prevalence and toxin characteristics of Bacillus thuringiensis isolated from 39 organic vegetables were investigated. B. thuringiensis was detected in 30 out of the 39 organic vegetables (76.9%) with a mean value of 2.60 log CFU/g. Twenty-five out of the 30 B. thuringiensis isolates (83.3%) showed insecticidal toxicity against Spodoptera exigua. The hblCDA, nheABC, and entFM genes were found to be the major toxin genes, but the ces gene was not detected in any of the tested B. thuringiensis isolates. The hemolysin BL enterotoxin was detected in all 30 B. thuringiensis isolates (100%). The non-hemolytic enterotoxin complex was found in 27 out of 30 B. thuringiensis isolates (90.0%). The B. thuringiensis tested in this study had similar toxin gene characteristics to B. cereus, which possessed more than one toxin gene. B. thuringiensis could have the potential risk of foodborne illness based on the toxin genes and toxin-producing ability.
Keywords
Bacillus thuringiensis; enterotoxin; toxin gene; safety;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Kim JB, Kim JM, Cho SH, Choi NJ, Oh DH. 2011. Toxin genes profiles and toxin producing ability of Bacillus cereus isolated from clinical and food samples. J. Food Sci. 76: T25-T29.   DOI
2 Chon JW, Kim JH, Lee SJ, Hyeon JY, Seo KH. 2012. Toxin profile, antibiotic resistance, and phenotypic and molecular characterization of Bacillus cereus in Sunsik. Food Microbiol. 32: 217-222.   DOI
3 Samapundo S, Heyndrickx M, Xhaferi R, Devlieghere F. 2011. Incidence, diversity and toxin gene characteristics of Bacillus cereus groups trains isolated from food products marketed in Belgium. Int. J. Food Microbiol. 150: 34-41.   DOI
4 Boonchai N, Asano SI, Bando H, Wiwat C. 2008. Study on cytotoxicity and nucleotide sequences of enterotoxin FM of Bacillus cereus isolated from various food sources. J. Med. Assoc. Thailand 91: 1425-1432.
5 Tran SL, Guillement E, Gohar M, Lereclus D, Ramarao N. 2010. CwpFM (EntFM) is a Bacillus cereus potential cell wall peptidase implicated in adhesion, biofilm formation, and virulence. J. Bacteriol. 192: 2638-2642.   DOI
6 Prabhaker A, Bishop AH. 2011. Invertebrate pathogenicity and toxin-producing potential of strains of Bacillus thuringiensis endemic to Antarctica. J. Invertebr. Pathol. 107: 132-138.   DOI
7 Guinebretiere MH, Broussolle V, Nguyen-The C. 2002. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J. Clin. Microbiol. 40: 3053-3056.   DOI
8 Stenfors LP, Granum PE. 2001. Psychrotolerant species from the Bacillus cereus group are not necessarily Bacillus weihenstephanensis. FEMS Microbiol. Lett. 197: 223-228.   DOI
9 Lund T, Debuyser ML, Granum PE. 2000. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38: 254-261.   DOI
10 Ehling-Schulz M, Guinbretiere MH, Monthan A, Berge O, Fricker M, Svensson B. 2006. Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol. Lett. 260: 232-240.   DOI
11 Oh MH, Ham JS, Cox JM. 2012. Diversity and toxigenicity among members of Bacillus cereus group. Int. J. Food Microbiol. 152: 1-8.   DOI
12 Jeon JH, Park JH. 2010. Toxin gene analysis of Bacillus cereus and Bacillus thuringiensis isolated from cooked rice. Korean J. Food Sci. Technol. 42: 361-367.
13 Svensson B, Monthan A, Shaheen R, Andersson M, Salkinoja-Salonen M, Christiansson A. 2006. Occurrence of emetic toxin producing Bacillus cereus in the dairy production chain. Int. Dairy J. 16: 740-749.   DOI
14 Bottone EJ. 2010. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23: 382-398.   DOI
15 Schoeni JL, Wong ACL. 1999. Heterogeneity observed in the components of haemolysin BL, an enterotoxin produced by Bacillus cereus. Int. J. Food Microbiol. 53: 159-167.   DOI
16 Granum PE, O'Sullivan K, Lund T. 1999. The sequence of the non-hemolytic enterotoxin operon from Bacillus cereus. FEMS Microbiol. Lett. 177: 225-229.   DOI
17 Tournas VH. 2005. Molds and yeasts in fresh and minimally processed vegetables and sprouts. Int. J. Food Microbiol. 99: 71-77.   DOI
18 Pluina NV, Zotov VS, Parkhomenko AL, Parkhomenko TU, Topunov AF. 2013. Genetic diversity of Bacillus thuringiensis from different geo-ecological regions of Ukraine by analyzing the 16S rRNA and gyrB genes and by AP-PCR and saAFLP. Acta Naturae 5: 90-100.
19 Frankenhuyzen KV. 2009. Insecticidal activity of Bacillus thuringiensis crystal proteins. J. Invertebr. Pathol. 101: 1-16.   DOI
20 Tornuk F, Cankurt H, Ozturk I, Sagdic O, Bayram O, Yetim H. 2011. Efficacy of various plant hydrosols as natural food sanitizers in reducing Escherichia coli O157:H7 and Salmonella typhimurium on fresh cut carrots and apples. Int. J. Food Microbiol. 148: 30-35.   DOI
21 Jun SY, Kim TH, Kwon JH, Lee YK. 2009. Microbiological evaluation in situ of each process in seed sprouting. Korean J. Food Preserv. 16: 971-976.
22 Whalon ME, Winferd BA. 2003. Mode of action and use. Arch. Insect Biochem. 54: 200-211.   DOI
23 Lee SY, Yun KM, Fellman J, Kang DH. 2002. Inhibition of Salmonella typhimurium and Listeria monocytogenes i n m ung bean sprouts by chemical treatment. J. Food Prot. 65: 1088-1092.   DOI
24 Lee CY, Sung DE, Oh SS. 2012. Profiling and priority selection of foodborne pathogens in fresh produce. J. Food Hyg. Saf. 27: 356-365.   DOI
25 McIntyre L, Bernard K, Beniac D, Isaac-Renton JL, Naseby DC. 2008. Identification of Bacillus cereus group species associated with food poisoning outbreaks in British Columbia, Canada. Appl. Environ. Microbiol. 74: 7451-7453.   DOI
26 Stenfos-Arnesen LP, Fagerlund A, Granum PE. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579-606.   DOI
27 Adrienne E, Shearer H, Christine MS, Rolf DJ. 2001. Evaluation of a polymerase chain reaction-based system for detection of Salmonella enteritidis, Escherichia coli O157:H7, Listeria spp., Listeria monocytogenes on fresh fruits and vegetables. J. Food Prot. 64: 788-795.   DOI
28 Lee DS, Kim KS, Kwon KS, Hong KW. 2008. A multiplex PCR for the detection and differentiation of enterotoxinproducing and emetic toxin-producing Bacillus cereus strains. Food Sci. Biotechnol. 17: 761-765.
29 Kim CW, Cho SH, Kang SH, Park YB, Yoon MH, Lee JB, et al. 2015. Prevalence, genetic diversity, and antibiotic resistance of Bacillus cereus isolated from Korean fermented soybean products. J. Food Sci. 80: M123-M128.   DOI
30 Chon JW, Hyeon JY, Park JH, Song KY, Kim JH, Seo KH. 2012. Improvement of mannitol-yolk-polymyxin B agar by supplementing with trimethoprim for quantitative detection of Bacillus cereus in foods. J. Food Prot. 75: 1342-1345.   DOI
31 Guo S, Liu M, Peng D, Ji S, Wang P, Yu Z, et al. 2008. New strategy for isolating novel nematicidal C crystal protein genes from Bacillus thuringiensis strain YBT-1518. Appl. Environ. Microbiol. 74: 6997-7001.   DOI
32 Lee YK, Jin NY, Lee BR, Seo MJ, Youn YN, Aoki CY, et al. 2015. Isolation and characterization of new Bacillus thuringiensis strains with insecticidal activity to difficult to control lepidopteran pests. J. Fac. Agric. Kyushu Univ. 60: 103-112.
33 Jin NY, Jung SY, Park C, Paek SK, Seo MJ, Youn YN, et al. 2009. The synergy effects of mixed treatment with tannic acid and Bacillus thuringiensis sub sp. kurstaki KB100 against Spodoptera exigua (Lepidoptera: Noctuidae). Korean J. Appl. Entomol. 48: 519-526.   DOI
34 Hendriksen NB, Hansen BM. 2006. Detection of Bacillus thuringiensis kurstaki HD1 on cabbage for human consumption. FEMS Microbiol. Lett. 257: 106-111.   DOI
35 Schoeni JL, Wong ACL. 2005. Bacillus cereus food poisoning and its toxins. J. Food Prot. 68: 636-648.   DOI
36 Sergeev N, Distler M, Vargas M, Chizhikov V, Herold KE, Rasooly A. 2005. Microarray analysis of Bacillus cereus group virulence factors. J. Microbiol. Methods 65: 488-502.
37 Ehling-Schulz M, Svensson B, Guinbretiere MH, Lindback T, Andersson M, Schulz A, et al. 2005. Emetic toxin formation of Bacillus cereus is restricted to a single evolutionary lineage of closely related isolates. Microbiology 151: 183-197.   DOI
38 Bartoszewicz M, Hansen BM, Swiecicka I. 2008. The members of the Bacillus cereus group are commonly present contaminants of fresh and heat-treated milk. Food Microbiol. 25: 588-596.   DOI
39 Ryan PA, MacMillan JD, Zilinskas BA. 1997. Molecular cloning and characterization of the genes encoding L1 and L2 components of hemolysin BL from Bacillus cereus. J. Bacteriol. 179: 2551-2556.   DOI
40 Naranjo SE, Ellsworth PC. 2010. Fourteen years of Bt cotton advances IPM in Arizona. Southwest Entomol. 35: 437-444.   DOI
41 Rosenquit H, Smidt L, Andersen SR, Jensen GB, Wilcks A. 2005. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. FEMS Microbiol. Lett. 250: 129-136.   DOI
42 Sacch CT, Whitney AM, Mayer LW, Morey R, Steigerwalt A, Boras A, et al. 2002. Sequencing of 16S rRNA gene: a rapid tool for identification of Bacillus anthracis. Emerg. Infect. Dis. 8: 1117-1123.   DOI
43 Altayar M, Sutherland AD. 2006. Bacillus cereus is common in the environment but emetic toxin producing isolates are rare. J. Appl. Microbiol. 100: 7-14.   DOI
44 Ehling-Schulz M, Vukov N, Schulz A, Shaheen R, Andersson M. 2005. Identification and partial characterization of the nonribosomal peptide synthetase gene responsible for cereulide production in emetic Bacillus cereus. Appl. Environ. Microbiol. 71: 105-113.   DOI
45 Yang CY, Pang JC, Kao SS, Tsen HY. 2003. Enterotoxigenicity and cytotoxicity of Bacillus thuringiensis strains and development of a process for Cry1Ac production. J. Agric. Food Chem. 51: 100-105.   DOI
46 Hansen BM, Hendriksen NB. 2001. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol. 67: 185-189.   DOI
47 Kim JB, Park JS, Kim MS, Hong SC, Park JH, Oh DH. 2011. Genetic diversity of emetic toxin producing Bacillus cereus Korean strains. Int. J. Food Microbiol. 150: 66-72.   DOI
48 Janes GB, Larsen P, Jacobsen BL, Madsen B, Smidt L, Andrup L. 2002. Bacillus thuringiensis in fecal samples from greenhouse workers after exposure to B. thuringiensis-based pesticides. Appl. Environ. Microbiol. 68: 4900-4905.   DOI
49 Ngamwongsatit P, Buasri W, Pianariyanon P, Pulsrikan C, Ohba M, Assavanig A, et al. 2008. Broad distribution of enterotoxin genes (hblCDA, nhe ABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. Int. J. Food Microbiol. 121: 352-356.   DOI
50 Chon JW, Kim JH, Seo KH. 2012. Prevalence, phenotypic traits and molecular characterization of emetic toxin-producing Bacillus cereus strains isolated from human stools in Korea. J. Appl. Microbiol. 112: 1042-1049.   DOI
51 Yang IC, Shih DY, Huang TP, Huang YP, Wang JY, Pan TM. 2005. Establishment of a novel multiplex PCR assay and detection of toxigenic strains of the species in the Bacillus cereus group. J. Food Prot. 68: 2123-2130.   DOI
52 Ghelardi E, Celandroni F, Salvetti S, Barsotti C, Baggiani A, Senesi S. 2002. Identification and characterization of toxigenic Bacillus cereus isolates responsible for two food-poisoning outbreaks. FEMS Microbiol. Lett. 208: 129-134.   DOI
53 Kang TM, Cho SK, Park JY, Song KB, Chung MS, Park JH. 2011. Analysis of microbial contamination of sprouts and freshcut salads in market. Korean J. Food Sci. Technol. 43: 490-494.   DOI
54 Kim WI, Jung HM, Kim SR, Park KH, Kim BS, Yun JC, et al. 2012. Investigation of microbial contamination levels of leafy greens and its distributing conditions at different time. J. Food Hyg. Saf. 27: 277-284.   DOI
55 Jo MJ, Jeong AR, Kim HJ, L ee NR, Oh SW, Chun HS, et al. 2011. Microbiological quality of fresh-cut produce and organic vegetables. Korean J. Food Sci. Technol. 43: 91-97.   DOI
56 Kim SH, Kim JS, Choi JP, Park JH. 2006. Prevalence and frequency of foodborne pathogens on unprocessed agricultural and marine products. Korean J. Food Sci. Technol. 38: 594-598.
57 Jin NY, Lee YK, Lee BR, Kim YS, Jun JH, Seo MJ, et al. 2015. Tannic acid enhancing insecticidal activity of protoxin produced in Bacillus thuringiensis subsp. kurstaki KB100 strain against Spodoptera exigua. J. Fac. Agric. Kyushu Univ. 60: 97-102.
58 Kim BY, Bang JY, Kim HK, K im YS, Kim BS. 2014. Bacillus cereus and Bacillus thuringiensis spores in Korean rice: prevalence and toxin production as affected by production area and degree of milling. Food Microbiol. 42: 89-94.   DOI