Browse > Article
http://dx.doi.org/10.4014/jmb.1705.05003

Antiamoebic Activity of Petiveria alliacea Leaves and Their Main Component, Isoarborinol  

Zavala-Ocampo, Lizeth M. (Posgrado en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatia, Instituto Politecnico Nacional)
Aguirre-Hernandez, Eva (Laboratorio de Fitoquimica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico)
Perez-Hernandez, Nury (Posgrado en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatia, Instituto Politecnico Nacional)
Rivera, Gildardo (Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional)
Marchat, Laurence A. (Posgrado en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatia, Instituto Politecnico Nacional)
Ramirez-Moreno, Esther (Posgrado en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatia, Instituto Politecnico Nacional)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.8, 2017 , pp. 1401-1408 More about this Journal
Abstract
Petiveria alliacea L. (Phytolacaceae) is a medicinal plant with a broad range of traditional therapeutic properties, including the treatment of dysentery and intestinal infections caused by protozoan parasites. However, its effects against Entamoeba histolytica have not been reported yet. We investigated the antiamoebic activity present in the leaves of P. alliacea Antiamoebic activity was evaluated in methanolic and aqueous extracts, as well as in the hexanic, methanolic, and EtOAc fractions. The P. alliacea methanolic extract showed a better antiamoebic activity than the aqueous extract with an $IC_{50}=0.51mg/ml$. Likewise, the hexanic fraction was the most effective fraction, showing a dose-dependent activity against E. histolytica, with an $IC_{50}=0.68mg/ml$. Hexanic subfraction 12-19 showed the highest antiamoebic activity at 0.8 mg/ml, producing 74.3% growth inhibition without any toxicity in mammal cells. A major component in subfraction 12-19 was identified as isoarborinol, which produced 51.4% E. histolytica growth inhibition at 0.05 mg/ml without affecting mammal cells. The P. alliacea leaf extract has antiamoebic activity that can be attributed to a major metabolite known as isoarborinol.
Keywords
Petiveria alliacea; isoarborinol; antiamoebic activity; cytotoxicity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nes WD, Wong RY, Griffin JF, Duax WL. 1991. On the structure, biosynthesis, function and phylogeny of isoarborinol and motiol. Lipids 26: 649-655.   DOI
2 De Pablos LM, Gonzalez G, Rodrigues R, Garcia GA, Parra A, Osuna A. 2010. Action of a pentacyclic triterpenoid, maslinic acid, against Toxoplasma gondii. J. Nat. Prod. 73: 831-834.   DOI
3 AlMusayeib NM, Mothana RA, El Gamal AA, Al-Massarani SM, Maes L. 2013. In vitro antiprotozoal activity of triterpenoid constituents of Kleinia odora growing in Saudi Arabia. Molecules 18: 9207-9218.   DOI
4 Simelane MB, Shonhai A, Shode FO, Smith P, Singh M, Opoku AR. 2013. Anti-plasmodial activity of some Zulu medicinal plants and of some triterpenes isolated from them. Molecules 18: 12313-12323.   DOI
5 Steele JC, Warhurst DC, Kirby GC, Simmonds MS. 1999. In vitro and in vivo evaluation of betulinic acid as an antimalarial. Phytother. Res. 13: 115-119.   DOI
6 Traore-Keita F, Gasquet M, di Giorgio C, Ollivier E, Delmas F, Keita A, et al. 2000. Antimalarial activity of four plants used in traditional medicine in Mali. Phytother. Res. 14: 45-47.   DOI
7 van Baren C, Anao I, Leo Di Lira P, Debenedetti S, Houghton P, Croft S, et al. 2006. Triterpenic acids and flavonoids from Satureja parvifolia. Evaluation of their antiprotozoal activity. J. Biosci. 61: 189-192.
8 Tan N, Kaloga M, Radtke OA, Kiderlen AF, Oksuz S, Ulubelen A, et al. 2002. Abietane diterpenoids and triterpenoic acids from Salvia cilicica and their antileishmanial activities. Phytochemistry 61: 881-884.   DOI
9 Gnoatto SC, Vechia LD, Lencina CL, Dassonville-Klimpt A, Da Nascimento S, Mossalayi D, et al. 2008. Synthesis and preliminary evaluation of new ursolic and oleanolic acids derivatives as antileishmanial agents. J. Enzyme Inhib. Med. Chem. 23: 604-610.   DOI
10 Cunha WR, Martins C, da Silva FD, Crotti AE, Lopes NP, Albuquerque S. 2003. In vitro trypanocidal activity of triterpenes from Miconia species. Planta Med. 69: 470-472.   DOI
11 Cunha WR, Crevelin EJ, Arantes GM, Crotti AE, Andrade e Silva ML, Furtado NA, et al. 2006. A study of the trypanocidal activity of triterpene acids isolated from Miconia species. Phytother. Res. 20: 474-478.   DOI
12 De Sousa JR, Demuner AJ, Pinheiro JA, Breitmaier E, Cassels BK. 1990. Dibenzyl trisulphide and trans-n-methyl-4-methoxyproline from Petiveria alliaceae. Phytochemistry 29: 3653-3655.   DOI
13 Martinez-Garcia J. 1984. Phytolaccaceae, pp. 1-44. In Juarez SC (ed.), Flora de Veracruz. Fasc 36. Instituto Nacional de Investigaciones sobre Recursos Bioticos, Mexico.
14 Cuca SL, Delle MF. 1992. 6-C-formyl and 6-C hydroxymethyl flavonones from Petiveria alliacea. Phytochemistry 31: 2481-2482.   DOI
15 Delle MF, Menichini F, Cuca LE. 1996. Petiveria alliacea: II. Further flavonoids and triterpenes. Gaz. Chim. Ital. 126: 275-278.
16 Kubec R, Musah RA. 2001. Cysteine sulfoxide derivatives in Petiveria alliacea. Phytochemistry 58: 981-985.   DOI
17 Echevarria A, Torres ID. 2001. Efecto de un extracto de Petiveria alliacea Lin sobre el crecimiento de Giardia lamblia in vitro. Rev. Cubana Med. Milit. 30: 161-165.
18 Berger I, Barrientos AC, Caceres A, Hernandez M, Rastrelli L, Passreiter CM, et al. 1998. Plants used in Guatemala for the treatment of protozoal infections: II. Activity of extracts and fractions of five Guatemalan plants against Trypanosoma cruzi. J. Ethnopharmacol. 62: 107-115.   DOI
19 Caceres A, Lopez B, Gonzalez S, Berger I, Tada I, Maki J. 1998. Plants used in Guatemala for the treatment of protozoal infections. I. Screening of activity to bacteria, fungi and American trypanosomes of 13 native plants. J. Ethnopharmacol. 62: 195-202.   DOI
20 Biblioteca Digital de la Medicina Tradicional Mexicana. Available at: http://www.medicinatradicionalmexicana.unam.mx/monografia.php?l=3&t=&id=7970. Accessed Dec. 25, 2016.
21 Diamond LS. 1961. Axenic cultivation of Entamoeba histolytica. Science 134: 336-337.   DOI
22 Bolanos V, Diaz-Martinez A, Soto J, Rodriguez MA, Lopez-Camarillo C, Marchat LA, et al. 2014. The flavonoid (-)-epicatechin affects cytoskeleton proteins and functions in Entamoeba histolytica. J. Proteomics 111: 74-85.   DOI
23 Chakravarty AK, Masuda K, Suzuki H, Ageta H. 1994. Unambiguous assignment of $^{13}C$ chemical shifts of some hopane and migrated hopane derivatives by 2D NMR. Tetrahedron 50: 2865-2876.   DOI
24 Segelman FP, Segelman AB. 1975. Constituents of Petiveria alliacea L. (Phytoloccaceae), Part I. Isolation of isoarborinol, isoarborinol acetate and isoarborinol cinnamate for the leaves. Lloydia 38: 537.
25 Kamperdick C, Adam G, Van NH, Sung TV. 1997. Chemical constituents of Madhuca pasquiery. Z. Naturforsch. C Biol. Sci. 52c: 295-300.
26 Garcia M, Monzote L, Scull R, Herrera P. 2012. Activity of cuban plants extracts against Leishmania amazonensis. ISRN Pharmacol. 2012: 104540.
27 Ruiz L, Ruiz L, Maco M, Cobos M, Gutierrez-Choquevilca AL, Roumy V. 2011. Plants used by native Amazonian groups from the Nanay River (Peru) for the treatment of malaria. J. Ethnopharmacol. 133: 917-921.   DOI
28 Roig JT. 1974. Plantas Medicinales, Aromaticas o Venenosas de Cuba. 2nd Ed. Cientifico-Tecnica, La Habana, Cuba.