Browse > Article
http://dx.doi.org/10.4014/jmb.1702.02069

Effects of Environmental Factors on Cyanobacterial Production of Odorous Compounds: Geosmin and 2-Methylisoborneol  

Oh, Hyung-Seok (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology)
Lee, Chang Soo (Freshwater Bioresources Culture Research Division, Nakdonggang National Institute of Biological Resources)
Srivastava, Ankita (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology)
Oh, Hee-Mock (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology)
Ahn, Chi-Yong (Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.7, 2017 , pp. 1316-1323 More about this Journal
Abstract
Geosmin and 2-methylisoborneol (2-MIB), responsible for earthy or musty smell, are a major concern for safe drinking water supplies. This study investigated the effects of environmental factors on odorous compound production and cell growth in cyanobacterial strains. Anabaena sp. FACHB-1384, a 2-MIB producer, was sensitive to low temperature (<$20^{\circ}C$). However, geosmin producers, Anabaena sp. Chusori and Anabaena sp. NIER, were sensitive to high light intensity (>$100{\mu}mol/m^2/sec$), but not to low temperature. Geosmin concentrations increased under higher nitrate concentrations, being linearly proportional to cell density. A P-limited chemostat showed that P-stress decreased the geosmin productivity and extracellular geosmin amount per cell in Anabaena sp. NIER. However, only 2-MIB productivity was reduced in Planktothrix sp. FACHB-1374 under P-limitation. The extracellular 2-MIB amount per cell remained constant at all dilution rates. In conclusion, high light intensity and P-stress can contribute to the lower incidence of geosmin, whereas 2-MIB reduction could be attainable at a lower temperature.
Keywords
Geosmin; 2-methylisoborneol; chemostat; cyanobacteria; Anabaena; Planktothrix;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Watson SB, Monis P, Baker P, Giglio S. 2016. Biochemistry and genetics of taste- and odor-producing cyanobacteria. Harmful Algae 54: 112-127.   DOI
2 Kutovaya OA, Watson SB. 2014. Development and application of a molecular assay to detect and monitor geosmin-producing cyanobacteria and actinomycetes in the Great Lakes. J. Great Lakes Res. 40: 404-414.   DOI
3 Wang Z, Li R. 2015. Effects of light and temperature on the odor production of 2-methylisoborneol-producing Pseudanabaena sp. and geosmin-producing Anabaena ucrainica (cyanobacteria). Biochem. Syst. Ecol. 58: 219-226.   DOI
4 Su M, Yu J, Zhang J, Chen H, An W, Vogt RD, et al. 2015. MIB-producing cyanobacteria (Planktothrix sp.) in a drinking water reservoir: distribution and odor producing potential. Water Res. 68: 444-453.   DOI
5 Cho H. 2007. 2-Methylisoborneol and natural organic matter adsorption by powdered activated carbon. MS Dissertation, University of Colorado, Colorado, USA.
6 Bruchet A, Duguet JP, Suffe IM. 2004. Role of oxidants and disinfectants on the removal, masking and generation of tastes and odours. Rev. Environ. Sci. Biotechnol. 3: 33-41.   DOI
7 Wang Z, Shao J, Xu Y, Yan B, Li R. 2015. Genetic basis for geosmin production by the water bloom-forming cyanobacterium, Anabaena ucrainica. Water 7: 175-187.
8 Otten TG, Graham JL, Harris TD, Dreher TW. 2016. Elucidation of taste- and odor-producing bacteria and toxigenic cyanobacteria in a midwestern drinking water supply reservoir by shotgun metagenomic analysis. Appl. Environ. Microbiol. 82: 5410-5420.   DOI
9 Vincent WF, Dryden SJ. 1989. Phytoplankton succession and cyanobacterial dominance in a eutrophic lake of the midtemperate zone (Lake Okaro, New Zealand). Arch. Hydrobiol. 32: 137-164.
10 Tang EP, Tremblay R, Vincent WF. 1997. Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? J. Phycol. 33: 171-181.   DOI
11 Sawyer CN. 1966. Basic concepts of eutrophication. J. Water Pollut. Control Fed. 38: 737-744.
12 Naes H, Aarnes H, Utkilen HC, Nilsen S, Skulberg OM. 1985. Effect of photon fluence rate and specific growth rate on geosmin production of the cyanobacterium Oscillatoria brevis (Kütz.) Gom. Appl. Environ. Microbiol. 49: 1538-1540.
13 Saadoun IM, Schrader KK, Blevins WT. 2001. Environmental and nutritional factors affecting geosmin synthesis by Anabaena sp. Water Res. 35: 1209-1218.   DOI
14 Heo J, Cho DH, Ramanan R, Oh HM, Kim HS. 2015. PhotoBiobox: a tablet sized, low-cost, high throughput photobioreactor for microalgal screening and culture optimization for growth, lipid content and $CO_2$ sequestration. Biochem. Eng. J. 103: 193-197.   DOI
15 Weiss CM. 1969. Relation of phosphates to eutrophication. J. Am. Water Works Assoc. 61: 387-391.   DOI
16 Thompson PA, Oh HM, Rhee GY. 1994. Storage of phosphorus in nitrogen-fixing Anabaena flos-aquae (Cyanophyceae). J. Phycol. 30: 267-273.   DOI
17 Herbert D, Elsworth R, Telling RC. 1956. The continuous culture of bacteria; a theoretical and experimental study. Microbiology 14: 601-622.
18 Oh HM, Rhee GY. 1990. Preparation of unialgal cultures from natural waters by a micropipette technique. Algae 5: 131-136.
19 Lloyd SW, Lea JM, Zimba PV, Grimm CC. 1998. Rapid analysis of geosmin and 2-methylisoborneol in water using solid phase micro extraction procedures. Water Res. 32: 2140-2146.   DOI
20 You KA, Byeon MS, Youn SJ, Hwang SJ, Rhew DH. 2013. Growth characteristics of blue-green algae (Anabaena spiroides) causing tastes and odors in the North-Han River, Korea. Korean J. Ecol. Environ. 46: 135-144.   DOI
21 Rosen BH, MacLeod BW, Simpson MR. 1992. Accumulation and release of geosmin during the growth phases of Anabaena circinalis (Kutz.) Rabenhorst. Water Sci. Technol. 25: 185-190.
22 Wei N, Hu L, Song L, Gan N. 2016. Microcystin-bound protein patterns in different cultures of Microcystis aeruginosa and field samples. Toxins 8: 293.   DOI
23 Byun JH, Hwang SJ, Kim BH, Park JR, Lee JK, Lim BJ. 2015. Relationship between a dense population of cyanobacteria and odorous compounds in the North Han River system in 2014 and 2015. Korean J. Ecol. Environ. 48: 263-271.   DOI
24 Kim KY, Khan JB, Choi IC, Hong SH, Lee JB, Lee SH, et al. 2015. Temporal and spatial distribution of geosmin and 2-MIB in the Daecheong reservoir. Korean J. Environ. Agric. 34: 14-20.   DOI
25 Li Z, Hobson P, An W, Burch MD, House J, Yang M. 2012. Earthy odor compounds production and loss in three cyanobacterial cultures. Water Res. 46: 5165-5173.   DOI
26 Yamada Y, Kuzuyama T, Komatsu M, Shin-ya K, Omura S, Cane DE, et al. 2015. Terpene synthases are widely distributed in bacteria. Proc. Natl. Acad. Sci. USA 112: 857-862.   DOI
27 Macias FA, Galindo JL, Garcia-Diaz MD, Galindo JC. 2008. Allelopathic agents from aquatic ecosystems: potential biopesticides models. Phytochem. Rev. 7: 155-178.
28 Ozaki K, Ohta A, Iwata C, Horikawa A, Tsuji K, Ito E, et al. 2008. Lysis of cyanobacteria with volatile organic compounds. Chemosphere 71: 1531-1538.   DOI
29 Juttner F, Watson SB. 2007. Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl. Environ. Microbiol. 73: 4395-4406.   DOI
30 Watson SB. 2004. Aquatic taste and odor: a primary signal of drinking-water integrity. J. Toxicol. Environ. Health A 67: 1779-1795.   DOI