Browse > Article
http://dx.doi.org/10.4014/jmb.1701.01073

Evaluation of the Synergistic Effect of Mixed Cultures of White-Rot Fungus Pleurotus ostreatus and Biosurfactant-Producing Bacteria on DDT Biodegradation  

Purnomo, Adi Setyo (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo)
Ashari, Khoirul (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo)
Hermansyah, Farizha Triyogi (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.7, 2017 , pp. 1306-1315 More about this Journal
Abstract
DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane) is one of the organic synthetic pesticides that has many negative effects for human health and the environment. The purpose of this study was to investigate the synergistic effect of mixed cutures of white-rot fungus, Pleurotus ostreatus, and biosurfactant-producing bacteria, Pseudomonas aeruginosa and Bacillus subtilis, on DDT biodegradation. Bacteria were added into the P. ostreatus culture (mycelial wet weight on average by 8.53 g) in concentrations of 1, 3, 5, and 10 ml ($1ml{\approx}1.25{\times}10^9$ bacteria cells/ml culture). DDT was degraded to approximately 19% by P. ostreatus during the 7-day incubation period. The principal result of this study was that the addition of 3 ml of P. aeruginosa into P. ostreatus culture gave the highest DDT degradation rate (approximately 86%) during the 7-day incubation period. This mixed culture combination of the fungus and bacteria also gave the best ratio of optimization of 1.91. DDD (1,1-dichloro-2,2-bis(4-chlorophenyl) ethane), DDE (1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene), and DDMU (1-chloro-2,2-bis(4-chlorophenyl) ethylene) were detected as metabolic products from the DDT degradation by P. ostreatus and P. aeruginosa. The results of this study indicate that P. aeruginosa has a synergistic relationship with P. ostreatus and can be used to optimize the degradation of DDT by P. ostreatus.
Keywords
Biodegradation; DDT; Pleurotus ostreatus; Pseudomonas aeruginosa; Bacillus subtilis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Purnomo AS, Nawfa R, Martak F, Shimizu K, Kamei I. 2017. Biodegradation of aldrin and dieldrin by white-rot fungus Pleurotus ostreatus. Curr. Microbiol. 74: 320-324.   DOI
2 Wahyuni S, Suhartono MT, Khaeruni A, Purnomo AS, Asranudin, Holilah, Riupassa PA. 2016. Purification and characterization of thermostable chitinase from Bacillus SW41 for chitin oligomer production. Asian J. Chem. 28: 2731-2736.   DOI
3 Purnomo AS, Mori T, Takagi K, Kondo R. 2011. Bioremediation of DDT contaminated soil using brown-rot fungi. Int. Biodeterior. Biodegrad. 65: 691-695.   DOI
4 Kantachote D, Singleton I, McClure N, Naidu R, Megharaj M, Harch BD. 2003. DDT resistance and transformation by different microbial strains isolated from DDT-contaminated soils and compost materials. Compost Sci. Util. 11: 300-310.   DOI
5 Bajaj A, Mayilraj S, Mudiam MK, Patel DK, Manickam N. 2014. Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT). Bioresour. Technol. 167: 398-406.   DOI
6 Wang S, Nomura N, Nakajima T, Uchiyama H. 2012. Case study of the relationship between fungi and bacteria associated with high-molecular-weight polycyclic aromatic hydrocarbon degradation. J. Biosci. Bioeng. 113: 624-630.   DOI
7 Hai FI, Modin O, Yamamoto K, Fukushi K, Nakajima F. 2012. Pesticide removal by a mixed culture of bacteria and white-rot fungi. J. Taiwan Inst. Chem. Eng. 43: 459-462.   DOI
8 Ge S, Liu L, Xue Q, Yuan Z. 2016. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors. Waste Manag. 55: 93-98.   DOI
9 Mata-Sandoval JC, Karns J, Torrents A. 2001. Influence of rhamnolipids and Triton X-100 on the biodegradation of three pesticides in aqueous and soil slurries. J. Agric. Food Chem. 49: 3296-3303.   DOI
10 Deepika KV, Kalam S, Sridhar PR, Podile AR, Bramhachari PV. 2016. Optimization of rhamnolipid biosurfactant production by mangrove sediment bacterium Pseudomonas aeruginosa KVD-HR42 using response surface methodology. Biocatal. Agric. Biotechnol. 5: 38-47.
11 El-Sheshtawy HS, Doheim MM. 2014. Selection of Pseudomonas aeruginosa for biosurfactant production and studies of its antimicrobial activity. Egypt. J. Petrol. 23: 1-6.   DOI
12 Purnomo AS, Mori T, Kamei I, Kondo R. 2011. Basic studies and applications on bioremediation of DDT: a review. Int. Biodeterior. Biodegrad. 65: 921-930.   DOI
13 Li FB, Li XM, Zhou SG, Zhuang L, Cao F, Huang DY, et al. 2010. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environ. Pollut. 158: 1733-1740.   DOI
14 Bao P, Hu ZY, Wang XJ, Chen J, Ba YX, Hua J, et al. 2012. Dechlorination of p,p'-DDTs coupled with sulfate reduction by novel sulfate-reducing bacterium Clostridium sp BXM. Environ. Pollut. 162: 303-310.   DOI
15 Bezza FA, Chirwa EMN. 2015. Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochem. Eng. J. 101: 168-178.   DOI
16 Wang T, Liang Y, Wu M, Chen Z, Lin J, Yang L. 2015. Natural products from Bacillus subtilis with antimicrobial properties. Chinese J. Chem. Eng. 23: 744-754.   DOI
17 Zheng G , Selvam A , Wong JW. 2012. Oil-in-water microemulsions enhance the biodegradation of DDT by Phanerochaete chrysosporium. Bioresour. Technol. 126: 397-403.   DOI
18 Kamei I, Kondo R. 2005. Biotransformation of dichloro-, trichloro-, and tetrachlorodibenzo-p-dioxin by the white-rot fungus Phlebia lindtneri. Appl. Microbiol. Biotechnol. 68: 560-566.   DOI
19 Kamei I, Sonoki S, Haraguchi K, Kondo R. 2006. Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus, Phlebia brevispora. Appl. Microbiol. Biotechnol. 73: 932-940.   DOI
20 Purnomo AS, Koyama F, Mori T, Kondo R. 2010. DDT degradation potential of cattle manure compost. Chemosphere 80: 619-624.   DOI
21 Purnomo AS, Putra SR, Shimizu K, Kondo R. 2014. Biodegradation of heptachlor and heptachlor epoxidecontaminated soils by white-rot fungal inocula. Environ. Sci. Pollut. Res. 21: 11305-11312.   DOI
22 Subba Rao RV, Alexander M. 1985. Bacterial and fungal cometabolism of 1,1,1-trichloro-2,2-bis-(4-chlorophenyl) ethane (DDT) and its breakdown products. Appl. Environ. Microbiol. 49: 509-516.
23 Arisoy M. 1998. Biodegradation of chlorinated organic compounds by white-rot fungi. Bull. Environ. Contam. Toxicol. 60: 872-876.   DOI
24 Bumpus JA, Aust SD. 1987. Biodegradation of DDT [1,1,1- tri-chloro-2,2-bis(4-chlorophenyl) ethane] by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 53: 2001-2008.
25 Shah MM, Barr DP, Chang N, Aust SD. 1992. Use of white rot fungi in the degradation of environmental chemicals. Toxicol. Lett. 64/65: 493-501.   DOI
26 Patil KC, Matsumura F, Boush GM. 1970. Degradation of endrin, aldrin, and DDT by soil microorganisms. Appl. Environ. Microbiol. 19: 879-881.
27 Xiao P, Mori T, Kamei I, Kondo R. 2011. A novel metabolic pathway for biodegradation of DDT by white rot fungi, Phlebia lindtneri and Phlebia brevispora. Biodegradation 22: 859-867.   DOI
28 Wedemeyer G. 1966. Dechlorination of DDT by Aerobacter aerogenes. Science 152: 647.
29 Wedemeyer G. 1967. Dechlorination of 1,1,1-trichloro-2,2- bis(p-chlorophenyl) ethane by Aerobacter aerogenes. Appl. Microbiol. 15: 569-574.
30 Pfaender FK, Alexander M. 1972. Extensive microbial degradation of DDT in vitro and DDT metabolism by natural communities. J. Agric. Food Chem. 20: 842-846.   DOI
31 Focht DD, Alexander M. 1970. DDT metabolites and analogs: ring fission by Hydrogenomonas. Science 170: 91-92.   DOI
32 Focht DD, Alexander M. 1971. Aerobic cometabolism of DDT analogues by Hydrogenomonas sp. J. Agric. Food Chem. 19: 20-22.   DOI
33 Nadeau LJ, Mann FM, Breen A, Sayler GS. 1994. Aerobic degradation of 1,1,1-trichloro-2,2-bis-(4-chlorophenyl) ethane (DDT) by Alcaligenes eutrophus A5. Appl. Environ. Microbiol. 60: 51-55.
34 Pesce SF, Wunderlin DA. 2004. Biodegradation of lindane by a native bacterial consortium isolated from contaminated river sediment. Int. Biodeterior. Biodegrad. 54: 255-260.   DOI
35 Kamanavalli CM, Ninnekar HZ. 2004. Biodegradation of DDT by a Pseudomonas species. Curr. Microbiol. 48: 10-13.   DOI
36 Fang H, Dong B, Yan H, Tang F, Yu Y. 2010. Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. J. Hazard. Mater. 184: 281-289.   DOI
37 Kale SP, Murthy NBK, Raghu K, Sherkhane PD, Carvalho FP. 1999. Studies on degradation of $^{14}C$-DDT in the marine environment. Chemosphere 39: 959-968.   DOI
38 Foght J, April T, Biggar K, Aislabie J. 2001. Bioremediation of DDT-contaminated soils: a review. Bioremediat. J. 5: 225-246.   DOI
39 Boul HL. 1995. DDT residues in the environment - a review with a New Zealand perspective. N.Z. J. Agric. Res. 38: 257-277.   DOI
40 Busvine JR. 1989. DDT: fifty years for good or ill. Pestic. Outlook 1: 4-8.
41 Aislabie JM, Richards NK, Boul HL. 1997. Microbial degradation of DDT and its residues - a review. N.Z. J. Agric. Res. 40: 269-282.   DOI
42 Simonich SL, Hites RA. 1995. Global distribution of persistent organochlorine compounds. Science 269: 1851-1854.   DOI
43 Purnomo AS, Kamei I, Kondo R. 2008. Degradation of 1,1,1- trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi. J. Biosci. Bioeng. 105: 614-621.   DOI
44 Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R. 2010. Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int. Biodeterior. Biodegrad. 64: 397-402.   DOI
45 Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A. 2001. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17: 1367-1371.   DOI
46 Silva SNRL, Farias CBB, Rufino RD, Luna JM, Sarubbo LA. 2010. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf. B Biointerfaces 79: 174-183.   DOI
47 Datta S. 2011. Optimization of culture conditions for biosurfactant production from Pseudomonas aeruginosa OCD1. J. Adv. Sci. Res. 2: 32-36.
48 Guerra-Santos L, Kappeli O, Fiechter A. 1984. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl. Environ. Microbiol. 48: 301-305.
49 Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM. 2002. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol. Prog. 18: 1277-1281.   DOI
50 Yin H, Qiang J, Jia Y, Ye J, Peng H, Qin H, et al. 2009. Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochem. 44: 302-308.   DOI
51 Zhang C, Wang S, Yan Y. 2012. Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production. Bioresour. Technol. 102: 7139-7146.
52 Cho EA, Seo J, Lee DW, Pan JG. 2011. Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores. Enzyme Microb. Technol. 49: 100-104.   DOI
53 Bidlan R. 2003. Studies on DDT degradation by bacterial strains. PhD Thesis, Central Food Technological Research Institute, University of Mysore, India.
54 Golovleva L, Skryabin GK. 1980. Degradation of DDT and its analogs by Pseudomonas aeruginosa 640x. Biol. Bull. Acad. Sci. USSR 7: 143-151.
55 Bumpus JA. 1995. Microbial degradation of azo dyes, pp. 157-175. In Singh VP (ed.), Biotransformations: Microbial Degradation of Health-Risk Compounds. Elsevier Science, Amsterdam. The Netherlands.
56 Farzaneh M, Shi ZQ, Ghassempour A, Sedaghat N, Ahmadzadeh M, Mirabolfathy M, et al. 2012. Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Food Control 23: 100-106.   DOI
57 Sompornpailin D, Siripattanakul-Ratpukdi S, Vangnai AS. 2014. Diethyl phthalate degradation by the freeze-dried, entrapped Bacillus subtilis strain 3C3. Int. Biodeterior. Biodegrad. 91: 138-147.   DOI
58 Gudina EJ, Rangarajan V, Sen R, Rodrigues LR. 2013. Potential therapeutic applications of biosurfactants. Trends Pharmacol. Sci. 34: 667-675.   DOI
59 Pornsunthorntawee N, Arttaweeporn N, Paisanjit S, Somboonthanate P, Abe M, Rujiravanit R, et al. 2008. Isolation and comparison of biosurfactants produced by Bacillus subtilis Pt2 and Pseudomonas aeruginosa SP4 for microbial surfactant-enhanced oil recovery. Biochem. Eng. J. 42: 172-179.   DOI
60 Zouari R, Chaabouni SE, Aydi DG. 2014. Optimization of Bacillus subtilis SPB1 biosurfactant production under solidstate fermentation using by-products of a traditional olive mill factory. Achiev. Life Sci. 8: 162-169.   DOI
61 Johnson BT, Kennedy JO. 1973. Biomagnification of p,p'- DDT and methoxychlor by bacteria. Appl. Microbiol. 26: 66-71.
62 Langlois BE, Collins JA, Sides KG. 1970. Some factors affecting degradation of organochlorine pesticide by bacteria. J. Dairy Sci. 53: 1671-1675.   DOI
63 Purnomo AS, Mori T, Kondo R. 2010. Involvement of Fenton reaction in DDT degradation by brown-rot fungi. Int. Biodeterior. Biodegrad. 64: 560-565.   DOI
64 Purnomo AS, Mori T, Putra SR, Kondo R. 2013. Biotransformation of heptachlor and heptachlor epoxide by white-rot fungus Pleurotus ostreatus. Int. Biodeterior. Biodegrad. 82: 40-44.   DOI
65 Betancur-Corredor B, Pino NJ, Cardona S, Penuela GA. 2015. Evaluation of biostimulation and Tween 80 addition for the bioremediation of long-term DDT-contaminated soil. J. Environ. Sci. 28: 101-109.   DOI
66 Buswell JA, Cai Y J, Chang ST. 1993. Fungal- and substrateassociated factors affecting the ability of individual mushroom species to utilize different lignocellulosic growth substrates, pp. 141-150. In Chang S, Buswell JA, Chiu S (eds.), Mushroom Biology and Mushroom Products. The Chinese University Press, Hong Kong.
67 Masaphy S, Levanon D, Henis Y, Venkateswrlu K, Kelly SL. 1995. Microsomal and cytosolic cytochrome-P450 mediated benzo(a)pyrene hydroxylation in Pleurotus pulmonarius. Biotechnol. Lett. 17: 969-974.   DOI
68 Masaphy S, Levanon D, Henis Y, Venkateswarlu K, Kelly SL. 1996. Evidence for cytochrome P-450 and P-450-mediated benzo(a)pyrene hydroxylation in the white rot fungus Phanerochaete chrysosporium. FEMS Microbiol. Lett. 135: 51-55.   DOI
69 Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE. 1996. Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 62: 2554-2559.
70 Mori T, Kondo R. 2002. Oxidation of chlorinated dibenzo-pdioxin and dibenzofuran by white-rot fungus, Phlebia lindtneri. FEMS Microbiol. Lett. 216: 223-227.   DOI
71 Mori T, Nakamura K, Kondo R. 2009. Fungal hydroxylation of polychlorinated naphthalenes with chlorine migration by wood rotting fungi. Chemosphere 77: 1230-1235.   DOI
72 Hiratsuka N, Wariishi H, Tanaka H. 2001. Degradation of diphenyl ether herbicides by the lignin-degrading basidiomycete Coriolus versicolor. Appl. Microbiol. Biotechnol. 57: 563-571.   DOI
73 Cuany A, Pralavorio M, Pauron D, Berge JB, Fournier D, Blais C. 1990. Characterization of microsomal oxidative activities in a wild-type and in a DDT resistant strain of Drosophila melanogaster. Pestic. Biochem. Physiol. 37: 293-302.   DOI
74 Joussen N, Heckel DG, Haas M, Schuphan I, Schmidt B. 2008. Metabolism of imidacloprid and DDT by P450 CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. Pest Manag. Sci. 64: 65-73.   DOI
75 Suhara H, Adachi A, Kamei I, Maekawa N. 2011. Degradation of chlorinated pesticide DDT by litter-decomposing basidiomycetes. Biodegradation 22: 1075-1086.   DOI
76 Bidlan M, Manonmani HK. 2002. Aerobic degradation of dichlorodiphenyltrichloroethane (DDT) by Serratia marcescens DT-1P. Process Biochem. 38: 49-56.   DOI