Browse > Article
http://dx.doi.org/10.4014/jmb.1702.02007

Expression and Characterization of a Single-Chain Variable Fragment against Human LOX-1 in Escherichia coli and Brevibacillus choshinensis  

Hu, Wei (School of Life Science, Jilin University)
Xiang, Jun-Yan (School of Life Science, Jilin University)
Kong, Ping (School of Life Science, Jilin University)
Liu, Ling (School of Life Science, Jilin University)
Xie, Qiuhong (School of Life Science, Jilin University)
Xiang, Hongyu (School of Life Science, Jilin University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.5, 2017 , pp. 965-974 More about this Journal
Abstract
The single-chain variable fragment (scFv) against lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a promising molecule for its potential use in the diagnosis and immunotherapy of atherosclerosis. Producing this scFv in several milligram amounts could be the starting point for further engineering and application of the scFv. In this study, the abundant expression of the anti-LOX-1 scFv was attempted using Escherichia coli (E. coli) and Brevibacillus choshinensis (B. choshinensis). The scFv had limited soluble yield in E. coli, but it was efficiently secreted by B. choshinensis. The optimized fermentation was determined using the Plackett-Burman screening design and response surface methodology, under which the yield reached up to 1.5 g/l in a 5-L fermentor. Moreover, the properties of the scFvs obtained from the two expression systems were different. The antigen affinity, transition temperature, and particle diameter size were 1.01E-07 M, $55.2{\pm}0.3^{\circ}C$, and 9.388 nm for the scFv expressed by B. choshinensis, and 4.53E-07 M, $52.5{\pm}0.3^{\circ}C$, and 13.54 nm for the scFv expressed by E. coli. This study established an efficient scale-up production methodology for the anti-LOX-1 scFv, which will boost its use in LOX-1-based therapy.
Keywords
Lectin-like oxidized low-density lipoprotein receptor-1; single-chain variable fragment antibody; Brevibacillus choshinensis; Escherichia coli; production methodology;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Mu T, Liang W, Ju Y, Wang Z, Wang Z, Roycik MD, et al. 2013. Efficient soluble expression of secreted matrix metalloproteinase 26 in Brevibacillus choshinensis. Protein Expr. Purif. 91: 125-133.   DOI
2 Choy CJ, Berkman CE. 2016. A method to determine the mode of binding for GCPII inhibitors using bio-layer interferometry. J. Enzyme Inhib. Med. Chem. 31: 1690-1693.   DOI
3 Liu Y, Meng Z, Shi R, Zhan L, Hu W, Xiang H, et al. 2015. Effects of temperature and additives on the thermal stability of glucoamylase from Aspergillus niger. J. Microbiol. Biotechnol. 25: 33-43.   DOI
4 Gao YS, Su JT, Yan YB. 2010. Sequential events in the irreversible thermal denaturation of human brain-type creatine kinase by spectroscopic methods. Int. J. Mol. Sci. 11: 2584- 2596.   DOI
5 Cheng YM, Lu MT, Yeh CM. 2015. Functional expression of recombinant human trefoil factor 1 by Escherichia coli and Brevibacillus choshinensis. BMC Biotechnol. 15: 32.   DOI
6 Onishi H, Mizukami M, Hanagata H, Tokunaga M, Arakawa T, Miyauchi A. 2013. Efficient production of anti-fluorescein and anti-lysozyme as single-chain anti-body fragments (scFv) by Brevibacillus expression system. Protein Expr. Purif. 91: 184-191.   DOI
7 Hanagata H, Mizukami M, Miyauchi A. 2014. Efficient expression of antibody fragments with the Brevibacillus expression system. Antibodies 3: 242-252.   DOI
8 D'Urzo N, Martinelli M, Nenci C, Brettoni C, Telford JL, Maione D. 2013. High-level intracellular expression of heterologous proteins in Brevibacillus choshinensis SP3 under the control of a xylose inducible promoter. Microb. Cell Fact. 12: 12.   DOI
9 Maehashi K, Matano M, Saito M, Udaka S. 2010. Extracellular production of riboflavin-binding protein, a potential bitter inhibitor, by Brevibacillus choshinensis. Protein Expr. Purif. 71: 85-90.   DOI
10 Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, et al. 1997. An endothelial receptor for oxidized low-density lipoprotein. Nature 386: 73-77.   DOI
11 Ding Z, Liu S, Wang X, Dai Y, Khaidakov M, Romeo F, Mehta JL. 2014. LOX-1, oxidant stress, mtDNA damage, autophagy, and immune response in atherosclerosis. Can. J. Physiol. Pharmacol. 92: 524-530.   DOI
12 Li D, Patel AR, Klibanov AL, Kramer CM, Ruiz M, Kang BY, et al. 2010. Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance. Circ. Cardiovasc. Imaging 3: 464-472.   DOI
13 Xu S, Ogura S, Chen J, Little PJ, Moss J, Liu P. 2013. LOX-1 in atherosclerosis: biological functions and pharmacological modifiers. Cell. Mol. Life Sci. 70: 2859-2872.   DOI
14 Murase T, Kume N, Kataoka H, Minami M, Sawamura T, Masaki T, et al. 2000. Identification of soluble forms of lectin-like oxidized LDL receptor-1. Arterioscler. Thromb. Vasc. Biol. 20: 715-720.   DOI
15 Shaw DJ, Seese R, Ponnambalam S, Ajjan R. 2014. The role of lectin-like oxidised low-density lipoprotein receptor-1 in vascular pathology. Diab. Vasc. Dis. Res. 11: 410-418.   DOI
16 Yamada T. 2011. Therapeutic monoclonal antibodies. Keio J. Med. 60: 37-46.   DOI
17 Andersen DC, Reilly DE. 2004. Production technologies for monoclonal antibodies and their fragments. Curr. Opin. Biotechnol. 15: 456-462.   DOI
18 Tsybovsky Y, Shubenok DV, Kravchuk ZI, Martsev SP. 2007. Folding of an antibody variable domain in two functional conformations in vitro: calorimetric and spectroscopic study of the anti-ferritin antibody VL domain. Protein Eng. Des. Sel. 20: 481-490.   DOI
19 Zou C, Duan X, Wu J. 2016. Efficient extracellular expression of Bacillus deramificans pullulanase in Brevibacillus choshinensis. J. Ind. Microbiol. Biotechnol. 43: 495-504.   DOI
20 Gaciarz A, Veijola J, Uchida Y, Saaranen MJ, Wang C, Horkko S, Ruddock LW. 2016. Systematic screening of soluble expression of antibody fragments in the cytoplasm of E. coli. Microb. Cell Fact. 15: 22.   DOI
21 Baden EM, Owen BA, Peterson FC, Volkman BF, Ramirez- Alvarado M, Thompson JR. 2008. Altered dimer interface decreases stability in an amyloidogenic protein. J. Biol. Chem. 283: 15853-15860.   DOI
22 Panchal J, Kotarek J, Marszal E, Topp EM. 2014. Analyzing subvisible particles in protein drug products: a comparison of dynamic light scattering (DLS) and resonant mass measurement (RMM). AAPS J. 16: 440-451.   DOI
23 Jonasson P, Liljeqvist S, Nygren PA, Stahl S. 2002. Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnol. Appl. Biochem. 35: 91-105.   DOI
24 Groff D, Armstrong S, Rivers PJ, Zhang J, Yang J, Green E, et al. 2014. Engineering toward a bacterial "endoplasmic reticulum" for the rapid expression of immunoglobulin proteins. MAbs 6: 671-678.   DOI
25 Turoverov KK, Haitlina SY, Pinaev GP. 1976. Ultra-violet fluorescence of actin. Determination of native actin content in actin preparations. FEBS Lett. 62: 4-6.   DOI
26 Tokunaga M, Mizukami M, Yamasaki K, Tokunaga H, Onishi H, Hanagata H, et al. 2013. Secretory production of single-chain antibody (scFv) in Brevibacillus choshinensis using novel fusion partner. Appl. Microbiol. Biotechnol. 97: 8569-8580.   DOI
27 Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NB, Hamid M. 2012. scFv antibody: principles and clinical application. Clin. Dev. Immunol. 2012: 980250.
28 Iwamoto S, Fujita Y, Kakino A, Yanagida K, Matsuda H, Yoshimoto R, et al. 2011. An alternative protein standard to measure activity of LOX-1 ligand containing apoB (LAB) - utilization of anti-LOX-1 single-chain antibody fused to apoB fragment. J. Atheroscler. Thromb. 18: 818-828.   DOI
29 Babaei A, Zarkesh-Esfahani SH, Gharagozloo M. 2011. Production of a recombinant anti-human CD4 single-chain variable-fragment antibody using phage display technology and its expression in Escherichia coli. J. Microbiol. Biotechnol. 21: 529-535.   DOI
30 Shahryari F, Safarnejad MR, Shams-Bakhsh M, Schillberg S, Nolke G. 2013. Generation and expression in plants of a single-chain variable fragment antibody against the immunodominant membrane protein of Candidatus Phytoplasma aurantifolia. J. Microbiol. Biotechnol. 23: 1047-1054.   DOI
31 Liu A, Ye Y, Chen W, Wang X, Chen F. 2015. Expression of V(H)-linker-V(L) orientation-dependent single-chain Fv antibody fragment derived from hybridoma 2E6 against aflatoxin B1 in Escherichia coli. J. Ind. Microbiol. Biotechnol. 42: 255-262.   DOI
32 Chen C, Snedecor B, Nishihara JC, Joly JC, McFarland N, Andersen DC, et al. 2004. High-level accumulation of a recombinant antibody fragment in the periplasm of Escherichia coli requires a triple-mutant (degP prc spr) host strain. Biotechnol. Bioeng. 85: 463-474.   DOI