Browse > Article
http://dx.doi.org/10.4014/jmb.1612.12012

The American Cockroach Peptide Periplanetasin-2 Blocks Clostridium Difficile Toxin A-Induced Cell Damage and Inflammation in the Gut  

Hong, Ji (Division of Life Science and Chemistry, College of Natural Science, Daejin University)
Zhang, Peng (Division of Life Science and Chemistry, College of Natural Science, Daejin University)
Yoon, I Na (Division of Life Science and Chemistry, College of Natural Science, Daejin University)
Hwang, Jae Sam (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
Kang, Jin Ku (Lee Gil Ya Cancer and Diabetes Institute, Gachon University Graduate School of Medicine)
Kim, Ho (Division of Life Science and Chemistry, College of Natural Science, Daejin University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.4, 2017 , pp. 694-700 More about this Journal
Abstract
Clostridium difficile, which causes pseudomembranous colitis, releases toxin A and toxin B. These toxins are considered to be the main causative agents for the disease pathogenesis, and their expression is associated with a marked increase of apoptosis in mucosal epithelial cells. Colonic epithelial cells are believed to form a physical barrier between the lumen and the submucosa, and abnormally increased mucosal epithelial cell apoptosis is considered to be an initial step in gut inflammation responses. Therefore, one approach to treating pseudomembranous colitis would be to develop agents that block the mucosal epithelial cell apoptosis caused by toxin A, thus restoring barrier function and curing inflammatory responses in the gut. We recently isolated an antimicrobial peptide, Periplanetasin-2 (Peri-2, YPCKLNLKLGKVPFH) from the American cockroach, whose extracts have shown great potential for clinical use. Here, we assessed whether Peri-2 could inhibit the cell toxicity and inflammation caused by C. difficile toxin A. Indeed, in human colonocyte HT29 cells, Peri-2 inhibited the toxin A-induced decrease in cell proliferation and ameliorated the cell apoptosis induced by this toxin. Moreover, in the toxin A-induced mouse enteritis model, Peri-2 blocked the mucosal disruption and inflammatory response caused by toxin A. These results suggest that the American cockroach peptide Peri-2 could be a possible drug candidate for addressing the pseudomembranous colitis caused by C. difficile toxin A.
Keywords
American cockroach peptide; Clostridium difficile; toxin A; inflammation; colonic epithelial cells; apoptosis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Li N, Lu R, Yu Y, Lu Y, Huang L, Jin J, et al. 2016. Protective effect of Periplaneta americana extract in ulcerative colitis rats induced by dinitrochlorobenzene and acetic acid. Pharm. Biol. 54: 2560-2567.   DOI
2 Wang XY, He ZC, Song LY, Spencer S, Yang LX, Peng F, et al. 2011. Chemotherapeutic effects of bioassay-guided extracts of the American cockroach, Periplaneta americana. Integr. Cancer Ther. 10: NP12-NP23.   DOI
3 Jiang Y, Wang X, Jin C, Chen X, Li J, Wu Z, et al. 2006. Inhibitory effect of Periplaneta americana extrac t on 3LL lung cancer in mice. Zhongguo Fei Ai Za Zhi 9: 488-491.
4 Zhang HW, Wei LY, Zhao G, Yang YJ, Liu SZ, Zhang ZY, et al. 2016. Periplaneta americana extract used in patients with systemic inflammatory response syndrome. World J. Emerg. Med. 7: 50-54.   DOI
5 Zhang H, Wei L, Zhang Z, Liu S, Zhao G, Zhang J, Hu Y. 2013. Protective effect of Periplaneta americana extract on intestinal mucosal barrier function in patients with sepsis. J. Tradit. Chin. Med. 33: 70-73.   DOI
6 Tonk M, Vilcinskas A, Rahnamaeian M. 2016. Insect antimicrobial peptides: potential tools for the prevention of skin cancer. Appl. Microbiol. Biotechnol. 100: 7397-7405.   DOI
7 Kim DH, Hwang JS, Lee IH, Nam ST, Hong J, Zhang P, et al. 2016. The insect peptide CopA3 increases colonic epithelial cell proliferation and mucosal barrier function to prevent inflammatory responses in the gut. J. Biol. Chem. 291: 3209-3223.   DOI
8 Kim DH, Lee IH, Nam ST, Hong J, Zhang P, Hwang JS, et al. 2014. Neurotropic and neuroprotective activities of the earthworm peptide Lumbricusin. Biochem. Biophys. Res. Commun. 448: 292-297.   DOI
9 Kang BR, Kim H, Nam SH, Yun EY, Kim SR, Ahn MY, et al. 2012. CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway. BMB Rep. 45: 85-90.   DOI
10 Braun F, Bertin-Ciftci J, Gallouet AS, Millour J, Juin P. 2011. Serum-nutrient starvation induces cell death mediated by Bax and Puma that is counteracted by p21 and unmasked by Bcl-x(L) inhibition. PLoS One 6: e23577.   DOI
11 Kim DH, Lee IH, Nam ST, Hong J, Zhang P, Lu LF, et al. 2015. Antimicrobial peptide, lumbricusin, ameliorates motor dysfunction and dopaminergic neurodegeneration in a mouse model of Parkinson's disease. J. Microbiol. Biotechnol. 25: 1640-1647.   DOI
12 Vayalil PK, Iles KE, Choi J, Yi AK, Postlethwait EM, Liu RM. 2007. Glutathione suppresses TGF-beta-induced PAI-1 expression by inhibiting p38 and JNK MAPK and the binding of AP-1, SP-1, and Smad to the PAI-1 promoter. Am. J. Physiol. Lung Cell Mol. Physiol. 293: L1281-L1292.   DOI
13 Kim H, Rhee SH, Kokkotou E, Na X, Savidge T, Moyer MP, et al. 2005. Clostridium difficile t oxin A r egulates induc ible cyclooxygenase-2 and prostaglandin E2 synthesis in colonocytes via reactive oxygen species and activation of p38 MAPK. J. Biol. Chem. 280: 21237-21245.   DOI
14 Ruch RJ, Crist KA, Klaunig JE. 1989. Effects of culture duration on hydrogen peroxide-induced hepatocyte toxicity. Toxicol. Appl. Pharmacol. 100: 451-464.   DOI
15 Nam ST, Seok H, Kim DH, Nam HJ, Kang JK, Eom JH, et al. 2012. Clostridium difficile toxin A inhibits erythropoietin receptor-mediated colonocyte focal adhesion through inactivation of Janus kinase-2. J. Microbiol. Biotechnol. 22: 1629-1635.   DOI
16 Nam HJ, Oh AR, Nam ST, Kang JK, Chang JS, Kim DH, et al. 2012. The insect peptide CopA3 inhibits lipopolysaccharide-induced macrophage activation. J. Pept. Sci. 18: 650-656.   DOI
17 Just I, Selzer J, Wilm M, von Eichel-Streiber C, Mann M, Aktories K. 1995. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375: 500-503.   DOI
18 Just I, Wilm M, Selzer J, Rex G, von Eichel-Streiber C, Mann M, Aktories K. 1995. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J. Biol. Chem. 270: 13932-13936.   DOI
19 Just I, Selzer J, von Eichel-Streiber C, Aktories K. 1995. The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile. J. Clin. Invest. 95: 1026-1031.   DOI
20 Kim H, Kokkotou E, Na X, Rhee SH, Moyer MP, Pothoulakis C, Lamont JT. 2005. Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129: 1875-1888.   DOI
21 Kim H, Rhee SH, Pothoulakis C, Lamont JT. 2007. Inflammation and apoptosis in Clostridium difficile enteritis is mediated by PGE2 up-regulation of Fas ligand. Gastroenterology 133: 875-886.   DOI
22 Kokkotou E, Espinoza DO, Torres D, Karagiannides I, Kosteletos S, Savidge T, et al. 2009. Melanin-concentrating hormone (MCH) modulates C difficile toxin A-mediated enteritis in mice. Gut 58: 34-40.   DOI
23 Kokkotou E, Moss AC, Michos A, Espinoza D, Cloud JW, Mustafa N, et al. 2008. Comparative efficacies of rifaximin and vancomycin for treatment of Clostridium difficile-associated diarrhea and prevention of disease recurrence in hamsters. Antimicrob. Agents Chemother. 52: 1121-1126.   DOI
24 Pothoulakis C, Castagliuolo I, Leeman SE, Wang CC, Li H, Hoffman BJ, Mezey E. 1998. Substance P receptor expression in intestinal epithelium in Clostridium difficile toxin A enteritis in rats. Am. J. Physiol. 275: G68-G75.   DOI
25 Pothoulakis C, Lamont JT. 2001. Microbes and microbial toxins: paradigms for microbial-mucosal interactions II. The integrated response of the intestine to Clostridium difficile toxins. Am. J. Physiol. Gastrointest. Liver Physiol. 280: G178-G183.   DOI
26 Pothoulakis C. 2000. Effects of Clostridium difficile toxins on epithelial cell barrier. Ann. NY Acad. Sci. 915: 347-356.
27 Warny M, Keates AC, Keates S, Castagliuolo I, Zacks JK, Aboudola S, et al. 2000. p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J. Clin. Invest. 105: 1147-1156.   DOI
28 Kang JK, Hwang JS, Nam HJ, Ahn KJ, Seok H, Kim SK, et al. 2011. The insect peptide coprisin prevents Clostridium difficile-mediated acute inflammation and mucosal damage through selective antimicrobial activity. Antimicrob. Agents Chemother. 55: 4850-4857.   DOI
29 Playford RJ. 1995. Peptides and gastrointestinal mucosal integrity. Gut 37: 595-597.   DOI
30 Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805-816.   DOI
31 Izawa H, Yamamoto H, Damdinsuren B, Ikeda K, Tsujie M, Suzuki R, et al. 2005. Effects of p21cip1/waf1 overexpression on growth, apoptosis and differentiation in human colon carcinoma cells. Int. J. Oncol. 27: 69-76.
32 Hing TC, Ho S, Shih DQ, Ichikawa R, Cheng M, Chen J, et al. 2013. The antimicrobial peptide cathelicidin modulates Clostridium difficile-associated colitis and toxin A-mediated enteritis in mice. Gut 62: 1295-1305.   DOI