Browse > Article
http://dx.doi.org/10.4014/jmb.1707.07067

Whole-Body Microbiota of Sea Cucumber (Apostichopus japonicus) from South Korea for Improved Seafood Management  

Kim, Tae-Yoon (Department of Life Science, Multidisciplinary Genome Institute, Hallym University)
Lee, Jin-Jae (Department of Life Science, Multidisciplinary Genome Institute, Hallym University)
Kim, Bong-Soo (Department of Life Science, Multidisciplinary Genome Institute, Hallym University)
Choi, Sang Ho (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.10, 2017 , pp. 1753-1762 More about this Journal
Abstract
Sea cucumber (Apostichopus japonicus) is a popular seafood source in Asia, including South Korea, and its consumption has recently increased with recognition of its medicinal properties. However, because raw sea cucumber contains various microbes, its ingestion can cause foodborne illness. Therefore, analysis of the microbiota in the whole body of sea cucumber can extend our understanding of foodborne illness caused by microorganisms and help to better manage products. We collected 40 sea cucumbers from four different sites in August and November, which are known as the maximum production areas in Korea. The microbiota was analyzed by an Illumina MiSeq system, and bacterial amounts were quantified by real-time PCR. The diversity and bacterial amounts in sea cucumber were higher in August than in November. Alpha-, Beta-, and Gammaproteobacteria were common dominant classes in all samples. However, the microbiota composition differed according to sampling time and site. Staphylococcus warneri and Propionibacterium acnes were commonly detected potential pathogens in August and November samples, respectively. The effect of experimental Vibrio parahaemolyticus infection on the indigenous microbiota of sea cucumber was analyzed at different temperatures, revealing clear alterations of Psychrobacter and Moraxella; thus, these shifts can be used as indicators for monitoring infection of sea cucumber. Although further studies are needed to clarify and understand the virulence and mechanisms of the identified pathogens of sea cucumber, our study provides a valuable reference for determining the potential of foodborne illness caused by sea cucumber ingestion and to develop monitoring strategies of products using microbiota information.
Keywords
Microbiota; sea cucumber; foodborne illness; potential pathogen;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Kim HS, Kim PS, Hyun DW, Lee JY, Kang W, Shin NR, et al. 2016. Pseudahrensia todarodis sp. nov., isolated from the gut of a Japanese flying squid, Todarodes pacificus. Int. J. Syst. Evol. Microbiol. 66: 1389-1393.   DOI
2 Jun g YT, Park S, Lee JS, Oh TK, Yoon JH. 2012. Pseudahrensia aquimaris gen. nov., sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 62: 2056-2061.   DOI
3 Ro manenko LA, Schumann P, Rohde M, Lysenko AM, Mikhailov VV, Stackebrandt E. 2002. Psychrobacter submarinus sp. nov. and Psychrobacter marincola sp. nov., psychrophilic halophiles from marine environments. Int. J. Syst. Evol. Microbiol. 52: 1291-1297.
4 Harris JM. 1993. The presence, nature, and role of gut microflora in aquatic invertebrates: a synthesis. Microb. Ecol. 25: 195-231.
5 Kamath U, Singer C, Isenberg HD. 1992. Clinical significance of Staphylococcus warneri bacteremia. J. Clin. Microbiol. 30: 261-264.
6 L egius B, Landuyt KV, Verschueren P, Westhovens R. 2012. Septic arthritis due to Staphylococcus warneri: a diagnostic challenge. Open Rheumatol. J. 6: 310-311.
7 Gao F, Li F, Tan J, Yan J, Sun H. 2014. Bacterial community composition in the gut content and ambient sediment of sea cucumber Apostichopus japonicus revealed by 16S rRNA gene pyrosequencing. PLoS One 9: e100092.   DOI
8 Sha Y, L iu M, Wang B , Jiang K, Sun G, Wang L . 2016. Gut bacterial diversity of farmed sea cucumbers Apostichopus japonicus with different growth rates. Microbiology 85: 109-115.   DOI
9 Yang G, Xu Z, Tian X, Dong S, Peng M. 2015. Intestinal microbiota and immune related genes in sea cucumber (Apostichopus japonicus) response to dietary beta-glucan supplementation. Biochem. Biophys. Res. Commun. 458: 98-103.   DOI
10 King GM, J udd C, K uske CR, Smith C. 2012. Analysis of stomach and gut microbiomes of the eastern oyster (Crassostrea virginica) from coastal Louisiana, USA. PLoS One 7: e51475.   DOI
11 Yang ZP, Sun JM, Xu Z, Zhang CC, Zhou Q. 2014. Beneficial effects of Metschnikowia sp. C14 on growth and intestinal digestive enzymes of juvenile sea cucumber Apostichopus japonicus. Anim. Feed Sci. Technol. 197: 142-147.   DOI
12 Jiang Y, Yao L, Li F, Tan Z, Zhai Y, Wang L. 2014. Characterization of antimicrobial resistance of Vibrio parahaemolyticus from cultured sea cucumbers (Apostichopus japonicas). Lett. Appl. Microbiol. 59: 147-154.   DOI
13 J eong U, Jin F, Choi J, Han J, Choi B, Kang S. 2016. A laboratory-scale recirculating aquaculture system for sea cucumber Apostichopus japonicus. Korean J. Fish. Aquat. Sci. 49: 343-350. [In Korean]
14 Seo J, Shin I, Lee S. 2011. Effect of dietary inclusion of various plant ingredients as an alternative for Sargassum thunbergii on growth and body composition of juvenile sea cucumber Apostichopus japonicus. Aquacult. Nutr. 17: 549-556.   DOI
15 Zh ao Y, Zhang W, Xu W, Mai K, Zhang Y, Liufu Z. 2012. Effects of potential probiotic Bacillus subtilis T13 on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus. Fish Shellfish Immunol. 32: 750-755.   DOI
16 C hang S, Cui X, Guo M, Tian Y, Xu W, Huang K, et al. 2017. Insoluble dietary fiber from pear pomace can prevent highfat diet-induced obesity in rats mainly by improving the structure of the gut microbiota. J. Microbiol. Biotechnol. 27: 856-867.   DOI
17 Korean Statistical Information Service (KOSIS). 2017. Fishery production survey. Available from http://kosis.kr/eng/statisticList/. Accessed December 2016.
18 Interstate Shellfish Sanitation Conference (ISSC). 1997. National Shellfish Sanitation Program: Guide for the Control of Molluscan Shellfish. Washington, DC.
19 Naravaneni R, Jamil K. 2005. Rapid detection of food-borne pathogens by using molecular techniques. J. Med. Microbiol. 54: 51-54.   DOI
20 L ee MJ, Lee JJ, Chung HY, Choi SH, Kim BS. 2016. Analysis of microbiota on abalone (Haliotis discus hannai) in South Korea for improved product management. Int. J. Food Microbiol. 234: 45-52.   DOI
21 Vetrovsky T, B aldrian P. 2013. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One 8: e57923.   DOI
22 Ne ogi SB, Chowdhury N, Asakura M, Hinenoya A, Haldar S, Saidi SM, et al. 2010. A highly sensitive and specific multiplex PCR assay for simultaneous detection of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus. Lett. Appl. Microbiol. 51: 293-300.   DOI
23 Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10: 996-998.   DOI
24 K im OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716-721.   DOI
25 Ho rii T, Suzuki Y, Kimura T, Kanno T, Maekawa M. 2001. Intravenous catheter-related septic shock caused by Staphylococcus sciuri and Escherichia vulneris. Scand. J. Infect. Dis. 33: 930-932.   DOI
26 Sch loss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541.   DOI
27 Min J, Choi J, Yang H, Lee S, Ryu J. 2014. Monitoring changes in suspended sediment concentration on the southwestern coast of Korea. J. Coastal Res. 70: 133-138.   DOI
28 D onn S, Kirkegaard JA, Perera G, Richardson AE, Watt M. 2015. Evolution of bacterial communities in the wheat crop rhizosphere. Environ. Microbiol. 17: 610-621.   DOI
29 Hedin G, Widerstrom M. 1998. Endocarditis due to Staphylococcus sciuri. Eur. J. Clin. Microbiol. Infect. Dis. 17: 673-675.
30 St epanovic S, Dakic I, Djukic S, Lozuk B, Svabic-Vlahovic M. 2002. Surgical wound infection associated with Staphylococcus sciuri. Scand. J. Infect. Dis. 34: 685-686.   DOI
31 Ish ige I, Usui Y, Takemura T, Eishi Y. 1999. Quantitative PCR of mycobacterial and propionibacterial DNA in lymph nodes of Japanese patients with sarcoidosis. Lancet 354: 120-123.   DOI
32 Sti rling A, Worthington T, Rafiq M, Lambert PA, Elliott TS. 2001. Association between sciatica and Propionibacterium acnes. Lancet 357: 2024-2025.   DOI
33 Purcell SW, Samyn Y, Conand C. 2012. Commercially important sea cucumbers of the world. FAO Species Catalogue for Fishery Purposes, No. 6. FAO, Rome.
34 C hen FL, Wang GC, Teng SO, Ou TY, Yu FL, Lee WS. 2013. Clinical and epidemiological features of Chryseobacterium indologenes infections: analysis of 215 cases. J. Microbiol. Immunol. Infect. 46: 425-432.   DOI
35 McKew G. 2014. Severe sepsis due to Chryseobacterium indologenes in an immunocompetent adventure traveler. J. Clin. Microbiol. 52: 4100-4101.   DOI
36 P erez-Pantoja D, Donoso R, Agullo L, Cordova M, Seeger M, Pieper DH, et al. 2012. Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ. Microbiol. 14: 1091-1117.   DOI
37 Yoon J, Matsuo Y, Matsuda S, Adachi K, Kasai H, Yokota A. 2007. Rubritalea spongiae sp. nov. and Rubritalea tangerina sp. nov., two carotenoid- and squalene-producing marine bacteria of the family Verrucomicrobiaceae within the phylum 'Verrucomicrobia', isolated from marine animals. Int. J. Syst. Evol. Microbiol. 57: 2337-2343.   DOI
38 Cerv ino JM, Hayes RL, Polson SW, Polson SC, Goreau TJ, Martinez RJ, et al. 2004. Relationship of Vibrio species infection and elevated temperatures to yellow blotch/band disease in Caribbean corals. Appl. Environ. Microbiol. 70: 6855-6864.   DOI
39 Fr anco R, Arenal A, Martin L, Martinez Y, Santiesteban D, Sotolongo J, et al. 2016. Psychrobacter sp. 17-1 enhances growth and survival in early postlarvae of white shrimp, Penaeus vannamei Boone, 1931 (Decapoda, Penaeidae). Crustaceana 89: 1467-1484.   DOI
40 L i H, Qiao G, Gu JQ, Zhou W, Li Q, Woo SH, et al. 2010. Phenotypic and genetic characterization of bacteria isolated from diseased cultured sea cucumber Apostichopus japonicus in northeastern China. Dis. Aquat. Organ. 91: 223-235.   DOI
41 Choo PS. 2008. Population status, fisheries and trade of sea cucumbers in Asia. Sea cucumbers: a global review of fisheries and trade, pp. 81-118. In Toral-Granda V, Lovatelli A, Vasconcellos M (eds.), FAO Fisheries and Aquaculture Technical Paper, No. 516. FAO, Rome.
42 Na gase H, Kitazato KT, Sasaki E, Hattori M, Kitazato K, Saito H. 1997. Antithrombin III-independent effect of depolymerized holothurian glycosaminoglycan (DHG) on acute thromboembolism in mice. Thromb. Haemost. 77: 399-402.   DOI
43 Fan H. 2001. Sea cucumber: research and development on the health care functioning of sea cucumber and its ingredients. Chin. Mar. Med. 4: 37-42.
44 Hamel JF, Mercier A. 2013. Apostichopus japonicus. Available from http://www.iucnredlist.org/details/full/180424/0. Accessed December 2016.
45 Lovatelli A, Conand S, Purcell S, Uthicke S, Hamel JF, Mercier A. 2004. Advances in sea cucumber a quaculture and management. FAO Fisheries Technical Paper, No. 463. FAO, Rome.