Browse > Article
http://dx.doi.org/10.4014/jmb.1602.02030

Functional Study of Lysine Decarboxylases from Klebsiella pneumoniae in Escherichia coli and Application of Whole Cell Bioconversion for Cadaverine Production  

Kim, Jung-Ho (Department of Biological Engineering, College of Engineering, Konkuk University)
Kim, Hyun Joong (Department of Biological Engineering, College of Engineering, Konkuk University)
Kim, Yong Hyun (Department of Biological Engineering, College of Engineering, Konkuk University)
Jeon, Jong Min (Department of Biological Engineering, College of Engineering, Konkuk University)
Song, Hun Suk (Department of Biological Engineering, College of Engineering, Konkuk University)
Kim, Junyoung (Department of Biological Engineering, College of Engineering, Konkuk University)
No, So-Young (Department of Biological Engineering, College of Engineering, Konkuk University)
Shin, Ji-Hyun (Department of Biological and Chemical Engineering, Hongik University)
Choi, Kwon-Young (Department of Environmental Engineering, Ajou University)
Park, Kyung Moon (Department of Biological and Chemical Engineering, Hongik University)
Yang, Yung-Hun (Department of Biological Engineering, College of Engineering, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.9, 2016 , pp. 1586-1592 More about this Journal
Abstract
Klebsiella pneumoniae is a gram-negative, non-motile, rod-shaped, and encapsulated bacterium in the normal flora of the intestines, mouth, skin, and food, and has decarboxylation activity, which results in generation of diamines (cadaverine, agmatine, and putrescine). However, there is no specific information on the exact mechanism of decarboxylation in K. pnuemoniae. Specifically lysine decarboxylases that generate cadaverine with a wide range of applications has not been shown. Therefore, we performed a functional study of lysine decarboxylases. Enzymatic characteristics such as optimal pH, temperature, and substrates were examined by overexpressing and purifying CadA and LdcC. CadA and LdcC from K. pneumoniae had a preference for L-lysine, and an optimal reaction temperature of 37℃ and an optimal pH of 7. Although the activity of purified CadA from K. pneumoniae was lower than that of CadA from E. coli, the activity of K. pneumoniae CadA in whole cell bioconversion was comparable to that of E. coli CadA, resulting in 90% lysine conversion to cadaverine with pyridoxal 5'-phosphate L-lysine.
Keywords
Klebsiella pneumoniae; biotransformation; lysine decarboxylase; cadaverine; optimization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Alaiz M, Navarro JL, Giron J, Vioque E. 1992. Amino acid analysis by high-performance liquid chromatography after derivatization with diethyl ethoxymethylenemalonate. J. Chromatogr. 591: 181-186.   DOI
2 Alberty RA, Bock RM. 1953. Alteration of the kinetic properties of an enzyme by the binding of buffer, inhibitor, or substrate. Proc. Nat. Acad. Sci. USA 39: 895.   DOI
3 Beier H, Fecker LF, Berlin J. 1987. Lysine decarboxylase from Hafnia alvei: purification, molecular data and preparation of polyclonal antibodies. Z. Naturforsch. C 42: 1307-1312.
4 Bover-Cid S, Hugas M, Izquierdo-Pulido M, Vidal-Carou MC. 2001. Amino acid-decarboxylase activity of bacteria isolated from fermented pork sausages. Int. J. Food Microbiol. 66: 185-189.   DOI
5 Buschke N, Schröder H, Wittmann C. 2011. Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose. Biotechnol. J. 6: 306-317.   DOI
6 Brickman TJ, Armstrong SK. 1996. The ornithine decarboxylase gene odc is required for alcaligin siderophore biosynthesis in Bordetella spp.: putrescine is a precursor of alcaligin. J. Bacteriol. 178: 54-60.   DOI
7 Burrell M, Hanfrey CC, Kinch LN, Elliott KA, Michael AJ. 2012. Evolution of a novel lysine decarboxylase in siderophore biosynthesis. Mol. Microbiol. 86: 485-499.   DOI
8 Buschke N, Becker J, Schäfer R, Kiefer P, Biedendieck R, Wittmann C. 2013. Systems metabolic engineering of xylose - utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnol. J. 8: 557-570.   DOI
9 Cowan ST, Steel KJ, Shaw C, Duguid JP. 1960. A classification of the Klebsiella group. Microbiology 23: 601-612.
10 Gale EF, Epps HMR. 1944. Studies on bacterial amino-acid decarboxylases: 1. L (+)-lysine decarboxylase. Biochem. J. 38: 232.   DOI
11 Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA. 1998. The natural polyamine spermine functions directly as a free radical scavenger. Proc. Nat. Acad. Sci. USA 95: 11140-11145.   DOI
12 Herminghaus S, Schreier PH, McCarthy JEG, Landsmann J, Botterman J, Berlin J. 1991. Expression of a bacterial lysine decarboxylase gene and transport of the protein into chloroplasts of transgenic tobacco. Plant Mol. Biol. 17: 475-486.   DOI
13 Ikeda N, Miyamoto M, Adachi N, Nakano M, Tanaka T, Kondo A. 2013. Direct cadaverine production from cellobiose using beta-glucosidase displaying Escherichia coli. AMB Express 3: 67.   DOI
14 Kim HJ, Kim YH, Shin J-H, Bhatia SK, Sathiyanarayanan G, Seo H-M, et al. 2015. Optimization of direct lysine decarboxylase biotransformation for cadaverine production with whole cell biocatalysts at high substrate concentration. J. Microbiol. Biotechnol. 25: 1108-1113.   DOI
15 Kim YH, Kim HJ, Shin J-H, Bhatia SK, Seo H-M, Kim Y-G, et al. 2015. Application of diethyl ethoxymethylenemalonate (DEEMM) derivatization for monitoring of lysine decarboxylase activity. J. Mol. Catal. B Enzym. 115: 151-154.   DOI
16 Jacob M. 2006. Biofilms, a new approach to the microbiology of dental plaque. Odontology 94: 1-9.   DOI
17 Jung IL, Kim IG. 2003. Thiamine protects against paraquatinduced damage: scavenging activity of reactive oxygen species. Environ. Toxicol. Pharmacol. 15: 19-26.   DOI
18 Kanjee U, Gutsche I, Alexopoulos E, Zhao B, El Bakkouri M, Thibault G, et al. 2011. Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase. EMBO J. 30: 931-944.   DOI
19 Kind S, Jeong WK, Schröder H, Wittmann C. 2010. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab. Eng. 12: 341-351.   DOI
20 Kroschwitz JI, Seidel A. 2004. Kirk-Othmer Encyclopedia of Chemical Technology. 5th Ed. Wiley-Interscience, Hoboken.
21 Lee SG, Lee JO, Yi JK, Kim BG. 2002. Production of cytidine 5'-monophosphate N-acetylneuraminic acid using recombinant Escherichia coli as a biocatalyst. Biotechnol. Bioeng. 80: 516-524.   DOI
22 Lemonnier M, Lane D. 1998. Expression of the second lysine decarboxylase gene of Escherichia coli. Microbiology 144: 751-760.   DOI
23 Miyamoto S, Kashiwagi K, Ito K, Watanabe S-I, Igarashi K. 1993. Estimation of polyamine distribution and polyamine stimulation of protein synthesis in Escherichia coli. Arch. Biochem. Biophys. 300: 63-68.   DOI
24 Qian ZG, Xia XX, Lee SY. 2011. Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol. Bioeng. 108: 93-103.   DOI
25 Matasyoh LG. 2012. Genetic variation and medicinal activity in Ocimum gratissimum L. of Kenya. PhD Thesis. Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya.
26 Meng SY, Bennett GN. 1992. Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. J. Bacteriol. 174: 2659-2669.   DOI
27 Mimitsuka T, Sawai H, Hatsu M, Yamada K. 2007. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci. Biotechnol. Biochem. 71: 2130-2135.   DOI
28 Sabo DL, Boeker EA, Byers B, Waron H, Fischer EH. 1974. Purification and physical properties of inducible Escherichia coli lysine decarboxylase. Biochemistry 13: 662-670.   DOI
29 Sabo DL, Fischer EH. 1974. Chemical properties of Escherichia coli lysine decarboxylase including a segment of its pyridoxal 5'-phosphate binding site. Biochemistry 13: 670-676.   DOI
30 Sarciaux JM, Mansour S, Hageman MJ, Nail SL. 1999. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying. J. Pharm. Sci. 88: 1354-1361.   DOI
31 Sathiyanarayanan G, Yi D-H, Bhatia SK, Kim J-H, Seo HM, Kim Y-G, et al. 2015. Exopolysaccharide from psychrotrophic Arctic glacier soil bacterium Flavobacterium sp. ASB 3-3 and its potential applications. RSC Adv. 5: 84492-84502.   DOI
32 Sugawara A, Matsui D, Takahashi N, Yamada M, Asano Y, Isobe K. 2014. Characterization of a pyridoxal-5'-phosphate-dependent L-lysine decarboxylase/oxidase from Burkholderia sp. AIU 395. J. Biosci. Bioeng. 118: 496-501.   DOI
33 Syu MJ. 2001. Biological production of 2,3-butanediol. Appl. Microbiol. Biotechnol. 55: 10-18.   DOI
34 Schneider J, Wendisch VF. 2011. Biotechnological production of polyamines by bacteria: recent achievements and future perspectives. Appl. Microbiol. Biotechnol. 91: 17-30.   DOI
35 Stratton JE, Hutkins RW, Taylor SL. 1991. Biogenic amines in cheese and other fermented foods: a review. J. Food Prot. 54: 460-470.   DOI
36 Sturgill G, Rather PN. 2004. Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Mol. Microbiol. 51: 437-446.   DOI
37 Takatsuka Y, Onoda M, Sugiyama T, Muramoto K, Tomita T, Kamio Y. 1999. Novel characteristics of Selenomonas ruminantium lysine decarboxylase capable of decarboxylating both L-lysine and L-ornithine. Biosci. Biotechnol. Biochem. 63: 1063-1069.   DOI
38 Takatsuka Y, Yamaguchi Y, Ono M, Kamio Y. 2000. Gene cloning and molecular characterization of lysine decarboxylase from Selenomonas ruminantium delineate its evolutionary relationship to ornithine decarboxylases from eukaryotes. J. Bacteriol. 182: 6732-6741.   DOI
39 Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A. 2009. Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase. Appl. Microbiol. Biotechnol. 82: 115-121.   DOI
40 Tkachenko A, Shumkov A, Akhova A. 2009. Adaptive functions of Escherichia coli polyamines in response to sublethal concentrations of antibiotics. Microbiology 78: 25-32.   DOI
41 Vienožinskien J, Januševičiut R, Pauliukonis A, Kazlauskas D. 1985. Lysine decarboxylase assay by the pH-stat method. Anal. Biochem. 146: 180-183.   DOI