Browse > Article
http://dx.doi.org/10.4014/jmb.1602.02015

Response of Syntrophic Propionate Degradation to pH Decrease and Microbial Community Shifts in an UASB Reactor  

Zhang, Liguo (State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology)
Ban, Qiaoying (College of Environmental and Resource Sciences, Shanxi University)
Li, Jianzheng (State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology)
Jha, Ajay Kumar (Central Campus Pulchowk, Institute of Engineering, Tribhuvan University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.8, 2016 , pp. 1409-1419 More about this Journal
Abstract
The effect of pH on propionate degradation in an upflow anaerobic sludge blanket (UASB) reactor containing propionate as a sole carbon source was studied. Under influent propionate of 2,000 mg/l and 35℃, propionate removal at pH 7.5-6.8 was above 93.6%. Propionate conversion was significantly inhibited with stepwise pH decrease from pH 6.8 to 6.5, 6.0, 5.5, 5.0, 4.5, and then to 4.0. After long-term operation, the propionate removal at pH 6.5-4.5 maintained an efficiency of 88.5%-70.1%, whereas propionate was hardly decomposed at pH 4.0. Microbial composition analysis showed that propionate-oxidizing bacteria from the genera Pelotomaculum and Smithella likely existed in this system. They were significantly reduced at pH ≤5.5. The methanogens in this UASB reactor belonged to four genera: Methanobacterium, Methanospirillum, Methanofollis, and Methanosaeta. Most detectable hydrogenotrophic methanogens were able to grow at low pH conditions (pH 6.0-4.0), but the acetotrophic methanogens were reduced as pH decreased. These results indicated that propionate-oxidizing bacteria and acetotrophic methanogens were more sensitive to low pH (5.5-4.0) than hydrogenotrophic methanogens.
Keywords
Upflow anaerobic sludge blanket reactor; pH decrease; propionate degradation; microbial community structure; PCR-DGGE;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Amani T, Nosrati M, Mousavi SM, Kermanshahi RK. 2011. Study of syntrophic anaerobic digestion of volatile fatty acids using enriched cultures at mesophilic conditions. Int. J. Environ. Sci. Technol. 8: 83-96.   DOI
2 Ariunbaatar J, Panico A, Espositoa G, Pirozzi F, Lens PNL. 2014. Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl. Energy 123: 143-156.   DOI
3 APHA. 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association.
4 Ariesyady HD, Ito T, Okabe S. 2007. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge. Water Res. 41: 1554-1568.   DOI
5 Ariesyady HD, Ito T, Yoshiguchi K, Okabe S. 2007. Phylogenetic and functional diversity of propionate-oxidizing bacteria in an UASB digester sludge. Appl. Microbiol. Biotechnol. 75: 673-683.   DOI
6 Astals S, Nolla-Ardèvol V, Mata-Alvarez J. 2012. Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: biogas and digestate. Bioresour. Technol. 110: 63-70.   DOI
7 Bai J, Liu H, Yin B, Ma H. 2015. Modeling of enhanced VFAs production from waste activated sludge by modified ADM1 with improved particle swarm optimization for parameters estimation. Biochem. Eng. J. 103: 22-31.   DOI
8 Ban Q, Li J, Zhang L, Jha AK, Zhang Y. 2013. Quantitative analysis of previously identified propionate-oxidizing bacteria and methanogens at different temperatures in an UASB reactor containing propionate as a sole carbon source. Appl. Biochem. Biotechnol. 171: 2129-2141.   DOI
9 Ban Q, Li J, Zhang L, Zhang Y, Jha AK, Ai B. 2013. Effect of propionate concentration on degradation characteristics of a propionate enriched culture. J. Harbin Institute Technol. 45: 43-47.
10 Ban Q, Li J, Zhang L, Jha AK. 2013. Syntrophic propionate degradation response to temperature decrease and microbial community shift in an UASB reactor. J. Microbiol. Biotechnol. 23: 382-389.   DOI
11 Ban Q, Li J, Zhang L, Jha AK, Loring N. 2013. Linking performance with microbial community characteristics in an anaerobic baffled reactor. Appl. Biochem. Biotechnol. 169: 1822-1836.   DOI
12 Ban Q, Zhang L, Li J. 2015. Shift of propionate-oxidizing bacteria with HRT decrease in an UASB reactor containing propionate as a sole carbon source. Appl. Biochem. Biotechnol. 175: 274-286.   DOI
13 Barredo MS, Evison LM. 1991. Effect of propionate toxicity on methanogen-enriched sludge. Appl. Environ. Microbiol. 57: 1764-1769.
14 Bassam BJ, Caetano-Anollés G, Gresshoff PM. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83.   DOI
15 Boone DR, Xun LY. 1987. Effects of pH, temperature, and nutrients on propionate degradation by a methanogenic enrichment culture. Appl. Environ. Microbiol. 53: 1589-1592.
16 Chen X, Sun Y, Xiu Z, Li X, Zhang D. 2006. Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int. J. Hydrogen Energy 31: 539-549.   DOI
17 Dhaked RK, Waghmare CK, Alam SI, Kamboj DV, Singh L. 2003. Effect of propionate toxicity on methanogenesis of night soil at psychrophilic temperature. Bioresour. Technol. 87: 299-303.   DOI
18 Ferry JG, Smith PH, Wolfe RS. 1974. PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. Int. J. Syst. Bacteriol. 24: 465-469.   DOI
19 de Bok FAM, Harmsen HJM, Plugge CM, de Vries MC, Akkermans ADL, de Vos WM, Stams AJM. 2005. The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int. J. Syst. Evol. Microbiol. 55: 1697-1703.   DOI
20 Demirel B, Scherer P. 2008. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass methane: a review. Rev. Environ. Sci. Biotechnol. 7: 173-190.   DOI
21 Fischer R, Thauer RK. 1990. Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett. 269: 368-372.   DOI
22 Grabowski A, Tindall BJ, Bardin V, Blanchet D, Jeanthon C. 2005. Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. Int. J. Syst. Evol. Microbiol. 55: 1113-1121.   DOI
23 Harmsen HJH, Kengen MP, Akkermans ADL, Stams AJM, de Vos WM. 1996. Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes. Appl. Environ. Microbiol. 62: 1656-1663.
24 Imachi H, Sekiguchi Y, Kamagata Y, Ohashi A, Harada H. 2000. Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl. Environ. Microbiol. 66: 3608-3615.   DOI
25 Hong SW, Lim IK, Kim YW, Shin SM, Chung KS. 2013. Denaturing gradient gel electrophoresis and culture-based analysis of the bacterial community in cheonggukjang, a Korean traditional fermented soybean food from Gangwon province. Korean J. Food Sci. Technol. 45: 515-520.   DOI
26 Imachi H, Aoi K, Tasumi E, Saito Y, Yamanaka Y, Saito Y, et al. 2011. Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. ISME J. 5: 1913-1925.   DOI
27 Horn MA, Matthies C, Küsel K, Schramm A. 2003. Hydrogenotrophic methanogenesis by moderately acid-tolerant methanogens of methane-emitting acidic peat. Appl. Environ. Microbiol. 69: 74-83.   DOI
28 Imachi HS, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata SY, Sekiguchi Y. 2007. Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 57: 1487-1492.   DOI
29 Keyser M, Witthuhn RC, Lamprecht C, Coetzee MP, Britz TJ. 2006. PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. Syst. Appl. Microbiol. 29: 77-84.   DOI
30 Kim IS, Hwang MH, Jang NJ, Hyun SH, Lee ST. 2004. Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. Int. J. Hydrgen Energy 29: 1133-1140.
31 Kosaka T, Kat S, Shimoyama T, Ishii S, Abe T, Watanabe K. 2008. The genome of Pelotomaculum thermopropionicum reveals niche associated evolution in anaerobic microbiota. Genome Res. 18: 442-448.   DOI
32 McMahon KD, Zheng D, Stams AJM, Mackie RI, Raskin L. 2004. Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge. Biotechnol. Bioeng. 87: 823-834.   DOI
33 Li J, Ban Q, Zhang L, Jha AK. 2012. Syntrophic propionate degradation in anaerobic digestion: a review. Int. J. Agric. Biol. 14: 843-850.
34 Lueders T, Pommerenke B, Friedrich MW. 2004. Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl. Environ. Microbiol. 70: 5778-5786.   DOI
35 Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR. 1999. Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int. J. Syst. Bacteriol. 49: 545-556.   DOI
36 Liu Y, Whitman WB. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. NY Acad. Sci. 1125: 171-189.   DOI
37 Ma K, Liu X, Dong X. 2005. Methanobacterium beijingense sp. nov., a novel methanogen isolated from anaerobic digesters. Int. J. Syst. Evol. Microbiol. 55: 325-329.   DOI
38 Masahiro T, Takashi M, Yoshiyuki U, Masafumi G, Koji S. 2008. Methanogenesis from acetate and propionate by thermophilic down-flow anaerobic packed-bed reactor. Bioresour. Technol. 99: 4786-4795.   DOI
39 McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schink B, et al. 2008. Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann. NY Acad. Sci. 1125: 58-72.   DOI
40 Moertelmaier C, Li C, Winter J, Gallert C. 2014. Fatty acid metabolism and population dynamics in a wet biowaste digester during re-start after revision. Bioresour. Technol. 166: 479-484.   DOI
41 Plugge CM, Balk M, Stams AJM. 2002. Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Int. J. Syst. Evol. Microbiol. 52: 391-399.   DOI
42 Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H. 1999. Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl. Environ. Microbiol. 65: 1280-1288.
43 Mori K, Harayama S. 2011. Methanobacterium petrolearium sp. nov. and Methanobacterium ferruginis sp. nov., mesophilic methanogens isolated from salty environments. Int. J. Syst. Evol. Microbiol. 61: 138-143.   DOI
44 Narihiro T, Terada T, Ohashi A, Kamagata Y, Nakamura K, Sekiguchi Y. 2012. Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method. Water Res. 46: 2167-2175.   DOI
45 Shigematsu T, Era S, Mizuno Y, Ninomiya K, Kamegawa Y, Morimura S, Kida K. 2006. Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl. Microbiol. Biotechnol. 72: 401-415.   DOI
46 Sivagurunathan P, Sen B, Liu CY. 2014. Overcoming propionic acid inhibition of hydrogen fermentation by temperature shift strategy. Int. J. Hydrogen Energy 39: 19232-19241.   DOI
47 Sousa DZ, Smidt H, Alves MM, Stams AJM. 2007. Syntrophomonas zehnderi sp. nov., an anaerobe that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum. Int. J. Syst. Evol. Microbiol. 57: 609-715.   DOI
48 Uyanik S. 2003. Granule development in anaerobic baffled reactor. Turkish J. Eng. Environ. Sci. 27: 131-144.
49 Worm P, Fermoso FG, Lens PNL, Plugge CM. 2009. Decreased activity of a propionate degrading community in a UASB reactor fed with synthetic medium without molybdenum, tungsten and selenium. Enzyme Microb. Technol. 45: 139-145.   DOI
50 Suresh A , Seo C, Chang H , Kim Y. 2013. Improved volatile fatty acid and biomethane production from lipid removed microalgal residue (LRμAR) through pretreatment. Bioresour. Technol. 149: 590-594.   DOI
51 Wan C, Du M, Li DJ, Yang X, Zheng L. 2011. Electrokinetic remediation and microbial community shift of β-cyclodextrin-dissolved petroleum hydrocarbon-contaminated soil. Appl. Microbiol. Biotechnol. 89: 2019-2025   DOI
52 Yang Y, Guo J, Hu Z. 2013. Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion. Water Res. 47: 6790-6800.   DOI
53 Zellner G, Boone DR, Keswan J, Whitman WB, Woese CR. 1999. Reclassification of Methanogenium tationis and Methanogenium liminatans as Methanofollis tationis gen. nov., comb. nov. and Methanofollis lirninatans comb. nov. and description of a new strain of Methanofollis liminatans. Int. J. Syst. Bacteriol. 49: 247-255.   DOI
54 Zheng D, Raskin L. 2000. Quantification of Methanosaeta species in anaerobic bioreactors using genus- and species-specific hybridization probes. Microb. Ecol. 39: 246-262.