Browse > Article
http://dx.doi.org/10.4014/jmb.1507.07101

Identification and Characterization of a New Alkaline SGNH Hydrolase from a Thermophilic Bacterium Bacillus sp. K91  

Yu, Tingting (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
Ding, Junmei (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
Zheng, Qingxia (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
Han, Nanyu (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
Yu, Jialin (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
Yang, Yunjuan (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
Li, Junjun (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
Mu, Yuelin (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
Wu, Qian (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
Huang, Zunxi (Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.4, 2016 , pp. 730-738 More about this Journal
Abstract
est19 is a gene from Bacillus sp. K91 that encodes a new esterase. A comparison of the amino acid sequence showed that Est19 has typical Ser-Gly-Asn-His (SGNH) family motifs and could be grouped into the SGNH hydrolase family. The Est19 protein was functionally cloned, and expressed and purified from Escherichia coli BL21(DE3). The enzyme activity was optimal at 60℃ and pH 9.0, and displayed esterase activity towards esters with short-chain acyl esters (C2-C6). A structural model of Est19 was constructed using phospholipase A1 from Streptomyces albidoflavus NA297 as a template. The structure showed an α/β-hydrolase fold and indicated the presence of the typical catalytic triad Ser49-Asp227-His230, which were further investigated by site-directed mutagenesis. To the best of our knowledge, Est19 is a new member of the SGNH hydrolase family identified from thermophiles, which may be applicable in the industrial production of semisynthetic β-lactam antibiotics after modification.
Keywords
Bacillus sp. K91; esterase; SGNH hydrolase; heterologous expression; site-directed mutagenesis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yang C, Cai N, Dong M, Jiang H, Li J, Qiao C, et al. 2008. Surface display of MPH on Pseudomonas putida JS4444 using ice nucleation protein and its application in detoxification of organophosphates. Biotechnol. Bioeng. 99: 30-37.   DOI
2 Yin X, Zhang ZJ. 2010. Recent patents on plant transgenic technology. Recent Pat. Biotechnol. 4: 98-111.   DOI
3 Yu S, Zheng B, Zhao X, Feng Y. 2010. Gene cloning and characterization of a novel thermophilic esterase from Fervidobacterium nodosum RT17-B1. Acta Biochim. Biophys. Sin. 42: 288-295.   DOI
4 Zhang S, Wu G, Feng S, Liu Z. 2014. Improved thermostability of esterase from Aspergillus fumigatus by site-directed mutagenesis. Enzyme Microb. Technol. 64-65: 11-16.   DOI
5 Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF. 2004. GDSL family of serine esterases/lipases. Prog. Lipid Res. 43: 534-552.   DOI
6 Alalouf O, Balazs Y, Volkinshtein M, Grimpel Y, Shoham G, Shoham Y. 2011. A new family of carbohydrate esterases is represented by a GDSL hydrolase/acetylxylan esterase from Geobacillus stearothermophilus. J. Biol. Chem. 286: 41993-42001.   DOI
7 Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201.   DOI
8 Bielen A, Cetkoviæ H, Long PF, Schwab H, Abramiæ M, Vujaklija D. 2009. The SGNH-hydrolase of Streptomyces coelicolor has (aryl) esterase and a true lipase activity. Biochimie 91: 390-400.   DOI
9 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI
10 Choi D, Kim Y, Chung I, Lee S, Kang S, Han K. 2000. Gene cloning and expression of cephalosporin-C deacetylase from Bacillus sp. KCCM10143. J. Microbiol. Biotechnol. 10: 221-226.
11 Ding JM, Yu TT, Liang LM, Xie ZR, Yang YJ, Zhou JP, et al. 2014. Biochemical characterization of a GDSL-motif esterase from Bacillus sp. K91 with a new putative catalytic mechanism. J. Microbiol. Biotechnol. 24: 1551-1558.   DOI
12 Colombres M, Garate JA, Lagos CF, Araya-Secchi R, Norambuena P, Quiroz S, et al. 2008. An eleven amino acid residue deletion expands the substrate specificity of acetyl xylan esterase II (AXE II) from Penicillium purpurogenum. J. Comput. Aided Mol. Des. 22: 19-28.   DOI
13 Correia MA, Prates JA, Brás J, Fontes CM, Newman JA, Lewis RJ, et al. 2008. Crystal structure of a cellulosomal family 3 carbohydrate esterase from Clostridium thermocellum provides insights into the mechanism of substrate recognition. J. Mol. Biol. 379: 64-72.   DOI
14 Dickinson BC, Packer MS, Badran AH, Liu DR. 2014. A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations. Nat. Commun. 5: 5352.   DOI
15 Gouet P, Courcelle E, Stuart DI, Metoz F. 1999. ESPript:analysis of multiple sequence alignments in PostScript. Bioinformatics 15: 305-308.   DOI
16 Hwang H, Kim S, Yoon S, Ryu Y, Lee SY, Kim TD. 2010. Characterization of a novel oligomeric SGNH-arylesterase from Sinorhizobium meliloti 1021. Int. J. Biol. Macromol. 46: 145-152.   DOI
17 Kauppinen S, Christgau S, Kofod LV, Halkier T, Dorreich K, Dalboge H. 1995. Molecular cloning and characterization of a rhamnogalacturonan acetylesterase from Aspergillus aculeatus. Synergism between rhamnogalacturonan degrading enzymes. J. Biol. Chem. 270: 27172-27178.   DOI
18 Li J, Derewenda U, Dauter Z, Smith S, Derewenda ZS. 2000. Crystal structure of the Escherichia coli thioesterase II, a homolog of the human Nef binding enzyme. Nat. Struct. Biol. 7: 555-559.   DOI
19 Kikuta Y, Yamada G, Mitsumori T, Takeuchi T, Nakayama K, Katsuda Y, et al. 2013. Requirement of catalytic-triad and related amino acids for the acyltransferase activity of Tanacetum cinerariifolium GDSL lipase/esterase TcGLIP for ester-bond formation in pyrethrin biosynthesis. Biosci. Biotechnol. Biochem. 77: 1822-1825.   DOI
20 Levisson M, van der Oost J, Kengen SW. 2007. Characterization and structural modeling of a new type of thermostable esterase from Thermotoga maritima. FEBS J. 274: 2832-2842.   DOI
21 Lo YC, Lin SC, Shaw JF, Liaw YC. 2003. Crystal structure of Escherichia coli thioesterase I/protease I/lysophospholipase L 1: consensus sequence blocks constitute the catalytic center of SGNH-hydrolases through a conserved hydrogen bond network. J. Mol. Biol. 330: 539-551.   DOI
22 Molgaard A, Kauppinen S, Larsen S. 2000. Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases. Structure 8: 373-383.   DOI
23 Navarro-Fernández J, Martínez-Martínez I, Montoro-García S, García-Carmona F, Takami H, Sánchez-Ferrer A. 2008. Characterization of a new rhamnogalacturonan acetyl esterase from Bacillus halodurans C-125 with a new putative carbohydrate binding domain. J. Bacteriol. 190: 1375-1382.   DOI
24 Okamura Y, Kimura T, Yokouchi H, Meneses-Osorio M, Katoh M, Matsunaga T, et al. 2010. Isolation and characterization of a GDSL esterase from the metagenome of a marine sponge-associated bacteria. Mar. Biotechnol. 12: 395-402.   DOI
25 Privé F, Kaderbhai NN, Girdwood S, Worgan HJ, Pinloche E, Scollan ND, et al. 2013. Identification and characterization of three novel lipases belonging to families II and V from Anaerovibrio lipolyticus 5ST. PLoS One 8: e69076.   DOI
26 Panikashvili D, Shi JX, Schreiber L, Aharoni. 2009. The Arabidopsis DCR encoding a soluble BAHD acyltransferase is required for cutin polyester formation and seed hydration properties. Plant Physiol. 151: 1773-1789.   DOI
27 Parka JJ, Jin P, Yoon J, Yang JI, Jeong HJ, Ranathunge K, et al. 2010. Mutation in wilted dwarf and lethal 1 (WDL1) causes abnormal cuticle formation and rapid water loss in rice. Plant Mol. Biol. 74: 91-103.   DOI
28 Pfeffer JM, Weadge JT, Clarke AJ. 2013. Mechanism of action of Neisseria gonorrhoeae O-acetylpeptidoglycan esterase, an SGNH serine esterase. J. Biol. Chem. 288: 2605-2613.   DOI
29 Schwede T, Kopp J, Guex N, Peitsch MC. 2003. SWISS-model: an automated protein homology-modeling server. Nucleic Acids Res. 31: 3381-3385.   DOI
30 Thompson JD, Higgins DG, Gibson TJ. 1994. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.   DOI
31 Upton C, Buckley JT. 1995. A new family of lipolytic enzymes? Trends Biochem. Sci. 20: 178-179.   DOI
32 Volokita M, Rosilio-Brami T, Rivkin N, Zik M. 2011. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants. Mol. Biol. Evol. 28: 551-565.   DOI