Browse > Article
http://dx.doi.org/10.4014/jmb.1510.10091

A Novel Production Method for High-Fructose Glucose Syrup from Sucrose-Containing Biomass by a Newly Isolated Strain of Osmotolerant Meyerozyma guilliermondii  

Khattab, Sadat Mohammad Rezq (Faculty of Science, Al-Azhar University)
Kodaki, Tsutomu (Institute of Advanced Energy, Kyoto University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.4, 2016 , pp. 675-683 More about this Journal
Abstract
One osmotolerant strain from among 44 yeast isolates was selected based on its growth abilities in media containing high concentrations of sucrose. This selected strain, named SK-ENNY, was identified as Meyerozyma guilliermondii by sequencing the internal transcribed spacer regions and partial D1/D2 large-subunit domains of the 26S ribosomal RNA. SK-ENNY was utilized to produce high-fructose glucose syrup (HFGS) from sucrose-containing biomass. Conversion rates to HFGS from 310-610 g/l of pure sucrose and from 75-310 g/l of sugar beet molasses were 73.5-94.1% and 76.2-91.1%, respectively. In the syrups produced, fructose yields were 89.4-100% and 96.5-100% and glucose yields were 57.6-82.5% and 55.3-79.5% of the theoretical values for pure sucrose and molasses sugars, respectively. This is the first report of employing M. guilliermondii for production of HFGS from sucrose-containing biomass.
Keywords
Meyerozyma guilliermondii; fermentation; sucrose; sugar beet molasses; high-fructose glucose syrup;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Atiyeh H, Duvnjak Z. 2001. Production of fructose and ethanol from media with high sucrose concentration by a mutant of Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 76: 1017-1022.   DOI
2 Atiyeh H, Duvnjak Z. 2002. Production of fructose and ethanol from sugar beet molasses using Saccharomyces cerevisiae ATCC 36858. Biotechnol. Prog. 18: 234-239.   DOI
3 Boretsky YR, Pynyaha YV, Boretsky VY, Fedorovych DV, Fayura LR, Protchenko O, et al. 2011. Identification of the genes affecting the regulation of riboflavin synthesis in the flavinogenic yeast Pichia guilliermondii using insertion mutagenesis. FEMS Yeast Res. 11: 307-314.   DOI
4 Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, et al. 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459: 657-662.   DOI
5 Choi MH, Park YH. 1999. Growth of Pichia guilliermondii A9, an osmotolerant yeast, in waste brine generated from kimchi production. Bioresour. Technol. 83: 251-253.   DOI
6 Chotineeranat S, Wansuksri R, Piyachomkwan K, Chatakanonda P, Weerathaworn P, Sriroth K. 2010. Effect of calcium ions on ethanol production from molasses by Saccharomyces cerevisiae. Sugar Tech. 12: 120-124.   DOI
7 D’Amore T, Russell I, Stewart GG. 1989. Sugar utilization by yeast during fermentation. J. Ind. Microbiol. 4: 315-324.   DOI
8 Doelle W, Greenfield PF. 1985. Fermentation pattern of Zymomonas mobilis at high sucrose concentrations. Appl. Microbiol. Biotechnol. 22: 411-415.
9 Dujon B. 2010. Yeast evolutionary genomics. Nat. Rev. Genet. 11: 512–524.   DOI
10 Duvnjak Z, Koren DW. 1987. Production of fructose syrup by selective removal of glucose from hydrolyzed Jerusalem artichoke juice. Biotechnol. Lett. 9: 783-788.   DOI
11 Edye LA, Johns MR, Ewings KN. 1989. Fructose production by Zymomonas mobilis in fed-batch culture with minimal sorbitol formation. Appl. Microbiol. Biotechnol. 31: 129-133.   DOI
12 Glinsmann WH, Irausquin H, Park YK. 1986. Evaluation of health aspects of sugars contained in carbohydrate sweeteners. Report of sugars task force, 1986. J. Nutr. 116: 1-216.   DOI
13 Hanna M, Xiao W. 2000. Isolation of nucleic acids, pp. 15-20. In Xiao W (eds.), Yeast Protocols, 2nd Ed. Vol. 313. Humana Press, New Jersey.
14 Kirk LA, Doelle HW. 1994. Simultaneous fructose and ethanol production from sucrose using Zymomonas mobilis 2864 co-immobilized with invertase. Biotechnol. Lett. 16: 533-538.   DOI
15 Hanover LM, White JS. 1993. Manufacturing, composition, and applications of fructose. Am. J. Clin. Nutr. 58: 724-732.   DOI
16 Khattab SMR, Saimura M, Kodaki T. 2013. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP+-dependent xylitol dehydrogenase. J. Biotechnol. 165: 153-156.   DOI
17 Kim WC, So JH, Kim SI, Shin JH, Song KS, Yu CB, Kho YH, Rhee IK. 2009. Isolation, identification, and characterization of Pichia guilliermondii K123-1 and Candida fermentati SI, producing isoflavone β-glycosidase to hydrolyze isoflavone glycoside efficiently, from the Korean traditional soybean paste. J. Appl. Biol. Chem. 52: 163-169.   DOI
18 Kurtzman CP, Fell JW. 1998. Summary of species characteristics, pp. 627-634. In Kurtzman CP, Fell JW (eds.). The Yeasts: A Taxonomic Study, 4th Ed. Elsevier, Amsterdam.
19 Kurtzman CP, Fell JW, Boekhout T, Robert V. 2011. Methods for isolation, phenotypic characterization and maintenance of yeasts, pp. 87-110. In Kurtzman CP, Fell JW, Boekhout, T (eds.). The Yeasts: A Taxonomic Study, 5th Ed. Elsevier, Amsterdam.
20 Kurtzman CP, Suzuki M. 2010. Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51: 2-14.   DOI
21 Marriott BP, Cole N, Lee E. 2009. National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. Nutrition 139: 1228-1235.   DOI
22 Reed MC, Lieb A, Nijhout FH. 2010. The biological significance of substrate inhibition: a mechanism with diverse functions. Bioessays 32: 422-429.   DOI
23 Papon N, Courdavault V, Clastre M. 2014. Biotechnological potential of the fungal CTG clade species in the synthetic biology era. Trends Biotechnol. 32: 167-168.   DOI
24 Parker K, Sale M, Nwosu V. 2010. High fructose corn syrup: production uses and public health concerns. Biotechnol. Mol. Biol. Rev. 5: 71-78.
25 Plascencia-Espinosaa MB, Santiago-Hernándeza A, Pavón-Orozcoa P, Vallejo-Becerraa V, Trejo-Estradab S, Sosa-Peinadoc A, et al. 2014. Effect of deglycosylation on the properties of thermophilic invertase purified from the yeast Candida guilliermondii MpIIIa. Process Biochem. 49: 1480-1487.   DOI
26 Reusser F, Gorin PAJ, Spenser JFT. 1960. The production of fructose as a residue of sucrose fermentation by Tricholoma nudum. Can. J. Microbiol. 6: 17-20.   DOI
27 Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
28 Saksinchai S, Suzuki M, Chantawannakul P, Ohkuma M, Lumyong S. 2012. A novel ascosporogenous yeast species, Zygosaccharomyces siamensis, and the sugar tolerant yeasts associated with raw honey collected in Thailand. Fungal Divers. 52: 123-139.   DOI
29 Spencer JFT, Spencer DM. 1997. Ecology: where yeasts live, pp. 33-58. In Spencer JFT, Spencer DM (eds.). Yeasts in Natural and Artificial Habitats. Springer, Berlin.
30 Suntinanalert P, Pemberton JP, Doelle HW. 1986. The production of ethanol plus fructose sweetener using fructose utilization negative mutant of Zymomonas mobilis. Biotechnol. Lett. 8: 351-356.   DOI
31 White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315-322. In Innis MA, Gelfand DH, Sninsky JJ, Taylor TJ (eds.). PCR Protocols: A Guide for Methods and Applications. Academic Press, New York.
32 Tanner F, Vojnovich C, Lane JM. 1945. Riboflavin production by Candida species. Science 101: 180-185.   DOI
33 Wah TT, Walaisri S, Assavanig A, Niamsiri N, Lertsiri S. 2013. Co-culturing of Pichia guilliermondii enhanced volatile flavor compound formation by Zygosaccharomyces rouxii in the model system of Thai soy sauce fermentation. Int. J. Food Microbiol. 160: 282-289.   DOI