Browse > Article
http://dx.doi.org/10.4014/jmb.1504.04075

Comparative Genomic Analysis Reveals That the 20K and 38K Prophages in Listeria monocytogenes Serovar 4a Strains Lm850658 and M7 Contribute to Genetic Diversity but Not to Virulence  

Fang, Chun (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine)
Cao, Tong (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine)
Shan, Ying (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine)
Xia, Ye (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine)
Xin, Yongping (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine)
Cheng, Changyong (College of Animal Science and Technology, Zhejiang A&F University)
Song, Houhui (College of Animal Science and Technology, Zhejiang A&F University)
Bowman, John (School of Agricultural Science, University of Tasmania)
Li, Xiaoliang (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine)
Zhou, Xiangyang (Zhoushan Entry-Exit Inspection and Quarantine Bureau)
Fang, Weihuan (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.1, 2016 , pp. 197-206 More about this Journal
Abstract
Listeria monocytogenes is a foodborne pathogen of considerable genetic diversity with varying pathogenicity. Initially, we found that the strain M7 was far less pathogenic than the strain Lm850658 though both are serovar 4a strains belonging to the lineage III. Comparative genomic approaches were then attempted to decipher the genetic basis that might govern the strain-dependent pathotypes. There are 2,761 coding sequences of 100% nucleotide identity between the two strains, accounting for 95.7% of the total genes in Lm850658 and 92.7% in M7. Lm850658 contains 33 specific genes, including a novel 20K prophage whereas strain M7 has 130 specific genes, including two large prophages (38K and 44K). To examine the roles of these specific prophages in pathogenicity, the 20K and 38K prophages were deleted from their respective strains. There were virtually no differences of pathogenicity between the deletion mutants and their parent strains, although some putative virulent factors like VirB4 are present in the 20K region or holin-lysin in the 38K region. In silico PCR analysis of 29 listeria genomes show that only strain SLCC2540 has the same 18 bp integration hotspot as Lm850658, whereas the sequence identity of their 20K prophages is very low (21.3%). The 38K and 44K prophages are located in two other different hotspots and are conserved in low virulent strains M7, HCC23, and L99. In conclusion, the 20K and 38K prophages of L. monocytogenes serovar 4a strains Lm850658 and M7 are not related to virulence but contribute to genetic diversity.
Keywords
Listeria monocytogenes; prophage; genetic diversity; virulence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Camilli A, Tilney LG, Portnoy DA. 1993. Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol. Microbiol. 8: 143-157   DOI
2 Al Mamun AA, Tominaga A, Enomoto M. 1997. Cloning and characterization of the region III flagellar operons of the four Shigella subgroups: genetic defects that cause loss of flagella of Shigella boydii and Shigella sonnei. J. Bacteriol. 179: 4493-4500.   DOI
3 Braun L, Dramsi S, Dehoux P, Bierne H, Lindahl G, Cossart P. 1997. InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol. Microbiol. 25: 285-294.   DOI
4 Brussow H, Canchaya C, Hardt WD. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68: 560-602.   DOI
5 Chen J, Chen Q, Jiang L, Cheng C, Bai F, Wang J, et al. 2010. Internalin profiling and multilocus sequence typing suggest four Listeria innocua subgroups with different evolutionary distances from Listeria monocytogenes. BMC Microbiol. 10: 97.   DOI
6 Chung IY, Jang HJ, Bae HW, Cho YH. 2014. A phage protein that inhibits the bacterial ATPase required for type IV pilus assembly. Proc. Natl. Acad. Sci. USA 111: 11503-11508.   DOI
7 Chen J, Cheng C, Xia Y, Zhao H, Fang C, Shan Y, et al. 2011. Lmo0036, an ornithine and putrescine carbamoyltransferase in Listeria monocytogenes, participates in arginine deiminase and agmatine deiminase pathways and mediates acid tolerance. Microbiology 157: 3150-3161.   DOI
8 Chen J, Jiang L, Chen Q, Zhao H, Luo X, Chen X, Fang W. 2009. Lmo0038 is involved in acid and heat stress responses and specific for Listeria monocytogenes lineages I and II, and Listeria ivanovii. Foodborne Pathog. Dis. 6: 365-376.   DOI
9 Chen J, Xia Y, Cheng C, Fang C, Shan Y, Jin G, Fang W. 2011. Genome sequence of the nonpathogenic Listeria monocytogenes serovar 4a strain M7. J. Bacteriol. 193: 5019-5020.   DOI
10 Coleman D, Knights J, Russell R, Shanley D, Birkbeck TH, Dougan G, Charles I. 1991. Insertional inactivation of the Staphylococcus aureus beta-toxin by bacteriophage phi 13 occurs by site- and orientation-specific integration of the phi 13 genome. Mol. Microbiol. 5: 933-939.   DOI
11 DeBardeleben HK, Lysenko ES, Dalia AB, Weiser JN. 2014. Tolerance of a phage element by Streptococcus pneumoniae leads to a fitness defect during colonization. J. Bacteriol. 196: 2670-2680.   DOI
12 den Bakker HC, Bowen BM, Rodriguez-Rivera LD, Wiedmann M. 2012. FSL J1-208, a virulent uncommon phylogenetic lineage IV Listeria monocytogenes strain with a small chromosome size and a putative virulence plasmid carrying internalin-like genes. Appl. Environ. Microbiol. 78: 1876-1889.   DOI
13 Deng X, Phillippy AM, Li Z, Salzberg SL, Zhang W. 2010. Probing the pan-genome of Listeria monocytogenes: new insights into intraspecific niche expansion and genomic diversification. BMC Genomics 11: 500.   DOI
14 Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, et al. 2001. Comparative genomics of Listeria species. Science 294: 849-852.
15 Doumith M, Cazalet C, Simoes N, Frangeul L, Jacquet C, Kunst F, et al. 2004. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect. Immun. 72: 1072-1083.   DOI
16 Hain T, Ghai R, Billion A, Kuenne CT, Steinweg C, Izar B, et al. 2012. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes. BMC Genomics 13: 144.   DOI
17 Farber JM, Peterkin PI. 1991. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55:476-511.
18 Freitag NE, Port GC, Miner MD. 2009. Listeria monocytogenes - from saprophyte to intracellular pathogen.Nat. Rev. Microbiol. 7: 623-628.   DOI
19 Gracieux P, Roche SM, Pardon P, Velge P. 2003. Hypovirulent Listeria monocytogenes strains are less frequently recovered than virulent strains on PALCAM and Rapid' L. mono media. Int. J. Food Microbiol. 83: 133-145.   DOI
20 Hain T, Steinweg C, Chakraborty T. 2006. Comparative and functional genomics of Listeria spp. J. Biotechnol. 126: 37-51.   DOI
21 Hamon M, Bierne H, Cossart P. 2006. Listeria monocytogenes: a multifaceted model. Nat. Rev. Microbiol. 4: 423-434.   DOI
22 Jiang LL, Xu JJ, Chen N, Shuai JB, Fang WH. 2006. Virulence phenotyping and molecular characterization of a low-pathogenicity isolate of Listeria monocytogenes from cow’s milk. Acta Biochim. Biophys. Sin. (Shanghai) 38: 262-270.   DOI
23 Kuenne C, Billion A, Mraheil MA, Strittmatter A, Daniel R, Goesmann A, et al. 2013. Reassessment of the Listeria monocytogenes pan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome. BMC Genomics 14: 47.   DOI
24 Jonquieres R, Bierne H, Fiedler F, Gounon P, Cossart P. 1999. Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of gram-positive bacteria. Mol. Microbiol. 34: 902-914.   DOI
25 Liu D. 2004. Listeria monocytogenes: comparative interpretation of mouse virulence assay. FEMS Microbiol. Lett. 233: 159-164.   DOI
26 Kahrstrom CT. 2014. Structural biology: solving the T4SS structural mystery. Nat. Rev. Microbiol. 12: 312.   DOI
27 Kapyrina NA. 1971. [Prophage induction in Listeria monocytogenes]. Veterinariia 9: 39-41.
28 Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35: 3100-3108.   DOI
29 Liu D, Lawrence ML, Wiedmann M, Gorski L, Mandrell RE, Ainsworth AJ, Austin FW. 2006. Listeria monocytogenes subgroups IIIA, IIIB, and IIIC delineate genetically distinct populations with varied pathogenic potential. J. Clin. Microbiol. 44: 4229-4233.   DOI
30 Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25: 955-964.   DOI
31 Monk IR, Gahan CG, Hill C. 2008. Tools for functional postgenomic analysis of Listeria monocytogenes. Appl. Environ. Microbiol. 74: 3921-3934.   DOI
32 Roberts A, Nightingale K, Jeffers G, Fortes E, Kongo JM, Wiedmann M. 2006. Genetic and phenotypic characterization of Listeria monocytogenes lineage III. Microbiology 152: 685-693.   DOI
33 Orsi RH, Borowsky ML, Lauer P, Young SK, Nusbaum C, Galagan JE, et al. 2008. Short-term genome evolution of Listeria monocytogenes in a non-controlled environment. BMC Genomics 9: 539.   DOI
34 Schattner P, Brooks AN, Lowe TM. 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33: W686-W689.   DOI
35 Paredes-Cervantes V, Flores-Mejia R, Moreno-Lafont MC, Lanz-Mendoza H, Tello-Lopez AT, Castillo-Vera J, et al. 2011. Comparative proteome analysis of Brucella abortus 2308 and its virB type IV secretion system mutant reveals new T4SS-related candidate proteins. J. Proteomics 74: 2959-2971.   DOI
36 Ragon M, Wirth T, Hollandt F, Lavenir R, Lecuit M, Le Monnier A, Brisse S. 2008. A new perspective on Listeria monocytogenes evolution. PLoS Pathog. 4: e1000146.   DOI
37 Schaferkordt S, Chakraborty T. 1997. Identification, cloning, and characterization of the Ima operon, whose gene products are unique to Listeria monocytogenes. J. Bacteriol. 179: 2707-2716.   DOI
38 Steele CL, Donaldson JR, Paul D, Banes MM, Arick T, Bridges SM, Lawrence ML. 2011. Genome sequence of lineage III Listeria monocytogenes strain HCC23. J. Bacteriol. 193: 3679-3680.   DOI
39 Stelma GN Jr, Reyes AL, Peeler JT, Francis DW, Hunt JM, Spaulding PL,et al. 1987. Pathogenicity test for Listeria monocytogenes using immunocompromised mice. J. Clin. Microbiol. 25: 2085-2089.
40 Sun AN, Camilli A, Portnoy DA. 1990. Isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect. Immun. 58: 3770-3778.
41 Tsai YH, Maron SB, McGann P, Nightingale KK, Wiedmann M, Orsi RH. 2011. Recombination and positive selection contributed to the evolution of Listeria monocytogenes lineages III and IV, two distinct and well supported uncommon L. monocytogenes lineages. Infect. Genet. Evol. 11: 1881-1890.   DOI
42 Vega Y, Rauch M, Banfield MJ, Ermolaeva S, Scortti M, Goebel W, Vazquez-Boland JA. 2004. New Listeria monocytogenes prfA* mutants, transcriptional properties of PrfA* proteins and structure-function of the virulence regulator PrfA. Mol. Microbiol. 52: 1553-1565.   DOI
43 Swaminathan B, Gerner-Smidt P. 2007. The epidemiology of human listeriosis. Microbes Infect. 9: 1236-1243.   DOI
44 Tal A, Arbel-Goren R, Costantino N, Court DL, Stavans J. 2014. Location of the unique integration site on an Escherichia coli chromosome by bacteriophage lambda DNA in vivo. Proc. Natl. Acad. Sci. USA 111: 7308-7312.   DOI
45 Tamura K, Dudley J, Nei M , Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI
46 Verghese B, Lok M, Wen J, Alessandria V, Chen Y, Kathariou S, Knabel S. 2011. comK prophage junction fragments as markers for Listeria monocytogenes genotypes unique to individual meat and poultry processing plants and a model for rapid niche-specific adaptation, biofilm formation, and persistence. Appl. Environ. Microbiol. 77: 3279-3292.   DOI
47 Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18: 821-829.   DOI
48 Zhao H, Chen J, Fang C, Xia Y, Cheng C, Jiang L, Fang W. 2011. Deciphering the biodiversity of Listeria monocytogenes lineage III strains by polyphasic approaches. J. Microbiol. 49: 759-767.   DOI
49 Zhu W, Lomsadze A, Borodovsky M. 2010. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38: e132.   DOI
50 Zhong Q, Zhao Y, Chen T, Yin S, Yao X, Wang J, et al. 2014. A functional peptidoglycan hydrolase characterized from T4SS in 89K pathogenicity island of epidemic Streptococcus suis serotype 2. BMC Microbiol. 14: 73.   DOI