Browse > Article
http://dx.doi.org/10.4014/jmb.1605.05016

Insights into the Usage of Nucleobase Triplets and Codon Context Pattern in Five Influenza A Virus Subtypes  

Deka, Himangshu (Department of Biotechnology, Assam University)
Chakraborty, Supriyo (Department of Biotechnology, Assam University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.11, 2016 , pp. 1972-1982 More about this Journal
Abstract
Influenza A virus is a single-stranded RNA virus with a genome of negative polarity. Owing to the antigenic diversity and cross concrete shift, an immense number of novel strains have developed astronomically over the years. The present work deals with the codon utilization partialness among five different influenza A viruses isolated from human hosts. All the subtypes showed the homogeneous pattern of nucleotide utilization with a little variation in their utilization frequencies. A lower bias in codon utilization was observed in all the subtypes as reflected by higher magnitudes of an efficacious number of codons. Dinucleotide analysis showed very low CpG utilization and a high predilection of A/T-ending codons. The H5N1 subtype showed noticeable deviation from the rest. Codon pair context analysis showed remarkable depletion of NNC-GNN and NNT-ANN contexts. The findings alluded towards GC-compositional partialness playing a vital role, which is reflected in the consequential positive correlation between the GC contents at different codon positions. Untangling the codon utilization profile would significantly contribute to identifying novel drug targets that will pacify the search for antivirals against this virus.
Keywords
Codon usage bias; influenza A virus; preferred codon; dinucleotide; codon pair context;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gouy M, Gautier C. 1982. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 10: 7055-7074.   DOI
2 Gramer MR, Lee JH, Choi YK, Goyal SM, Joo HS. 2007. Serologic and genetic characterization of North American H3N2 swine influenza A viruses. Can. J. Vet. Res. 71: 201-206.
3 Grantham R, Gautier C, Gouy M, Mercier R, Pave A. 1980. Codon catalog usage and the genome hypothesis. Nucleic Acids Res. 8: r49-r62.
4 Greenacre M, Hastie T. 1987. The geometric interpretation of correspondence analysis. J. Am. Stat. Assoc. 82: 437-447.   DOI
5 Greenacre M, Vrba E. 1984. Graphical display and interpretation of antelope census data in African wildlife areas, using correspondence analysis. Ecology 65: 984-997.   DOI
6 Greenbaum BD, Levine AJ, Bhanot G, Rabadan R. 2008. Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathog. 4: e1000079.   DOI
7 Hammer O, Harper D, Ryan P. 2001. PAST - PAlaeontological STatistics, ver. 1.89. Palaeontol. Electron. 4: 1-9.
8 Jenkins GM, Holmes EC. 2003. The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res. 92: 1-7.   DOI
9 Karlin S, Doerfler W, Cardon LR. 1994. Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses? J. Virol. 68: 2889-2897.
10 Karlin S, Mrazek J. 1997. Compositional differences within and between eukaryotic genomes. Proc. Natl. Acad. Sci. USA 94: 10227-10232.   DOI
11 Korteweg C, Gu J. 2008. Pathology, molecular biology, and pathogenesis of avian influenza A (H5N1) infection in humans. Am. J. Pathol. 172: 1155-1170.   DOI
12 Moriyama EN, Powell JR. 1998. Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli. Nucleic Acids Res. 26: 3188-3193.   DOI
13 Moura G, Pinheiro M, Arrais J, Gomes AC, Carreto L, Freitas A, et al. 2007. Large scale comparative codon-pair context analysis unveils general rules that fine-tune evolution of mRNA primary structure. PLoS One 2: e847.   DOI
14 Moura G, Pinheiro M, Silva R, Miranda I, Afreixo V, Dias G, et al. 2005. Comparative context analysis of codon pairs on an ORFeome scale. Genome Biol. 6: R28.   DOI
15 Novembre JA. 2002. Accounting for background nucleotide composition when measuring codon usage bias. Mol. Biol. Evol. 19: 1390-1394.   DOI
16 Ogle JM, Ramakrishnan V. 2005. Structural insights into translational fidelity. Annu. Rev. Biochem. 74: 129-177.   DOI
17 Osawa S, Ohama T, Yamao F, Muto A, Jukes TH, Ozeki H, Umesono K. 1988. Directional mutation pressure and transfer RNA in choice of the third nucleotide of synonymous twocodon sets. Proc. Natl. Acad. Sci. USA 85: 1124-1128.   DOI
18 Post LE, Nomura M. 1980. DNA sequences from the str operon of Escherichia coli. J. Biol. Chem. 255: 4660-4666.
19 Romero H, Zavala A, Musto H. 2000. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res. 28: 2084-2090.   DOI
20 Rabadan R, Levine AJ, Robins H. 2006. Comparison of avian and human influenza A viruses reveals a mutational bias on the viral genomes. J. Virol. 80: 11887-11891.   DOI
21 Shackelton LA, Parrish CR, Holmes EC. 2006. Evolutionary basis of codon usage and nucleotide composition bias in vertebrate DNA viruses. J. Mol. Evol. 62: 551-563.   DOI
22 Sharp PM, Li WH. 1987. The codon adaptation index - a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15: 1281-1295.   DOI
23 Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, et al. 2009. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459: 1122-1125.   DOI
24 Sueoka N. 1988. Directional mutation pressure and neutral molecular evolution. Proc. Natl. Acad. Sci. USA 85: 2653-2657.   DOI
25 Zhou T, Gu W, Ma J, Sun X, Lu Z. 2005. Analysis of synonymous codon usage in H5N1 virus and other influenza A viruses. Biosystems 81: 77-86.
26 Ungchusak K, Auewarakul P, Dowell SF, Kitphati R, Auwanit W, Puthavathana P, et al. 2005. Probable person-toperson transmission of avian influenza A (H5N1). N. Engl. J. Med. 352: 333-340.   DOI
27 Wong EH, Smith DK, Rabadan R, Peiris M, Poon LL. 2010. Codon usage bias and the evolution of influenza A viruses. Codon Usage Biases of Influenza Virus. BMC Evol. Biol. 10: 253.   DOI
28 Wright F. 1990. The 'effective number of codons' used in a gene. Gene 87: 23-29.   DOI
29 Xiang H, Zhang R, Butler RR 3rd, Liu T, Zhang L, Pombert JF, Zhou Z. 2015. Comparative analysis of codon usage bias patterns in microsporidian genomes. PLoS One 10: e0129223.   DOI
30 Zhong J, Li Y, Zhao S, Liu S, Zhang Z. 2007. Mutation pressure shapes codon usage in the GC-rich genome of footand- mouth disease virus. Virus Genes 35: 767-776.   DOI
31 Chen Y. 2013. A comparison of synonymous codon usage bias patterns in DNA and RNA virus genomes: quantifying the relative importance of mutational pressure and natural selection. Biomed. Res. Int. 2013: 406342.
32 Ahn I, Son HS. 2010. Comparative study of the nucleotide bias between the novel H1N1 and H5N1 subtypes of influenza A viruses using bioinformatics techniques. J. Microbiol. Biotechnol. 20: 63-70.
33 Akashi H. 1994. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136: 927-935.
34 Boycheva S, Chkodrov G, Ivanov I. 2003. Codon pairs in the genome of Escherichia coli. Bioinformatics 19: 987-998.   DOI
35 Cheng X, Virk N, Chen W, Ji S, Sun Y, Wu X. 2013. CpG usage in RNA viruses: data and hypotheses. PLoS One 8: e74109.   DOI
36 Chiapello H, Ollivier E, Landes-Devauchelle C, Nitschke P, Risler JL. 1999. Codon usage as a tool to predict the cellular location of eukaryotic ribosomal proteins and aminoacyltRNA synthetases. Nucleic Acids Res. 27: 2848-2851.   DOI
37 Comeron JM, Aguade M. 1998. An evaluation of measures of synonymous codon usage bias. J. Mol. Evol. 47: 268-274.   DOI
38 Gill PW. 1971. Hong Kong 68 variant of influenza A2. Br. Med. J. 3: 308.
39 Goni N, Iriarte A, Comas V, Sonora M, Moreno P, Moratorio G, et al. 2012. Pandemic influenza A virus codon usage revisited: biases, adaptation and implications for vaccine strain development. Virol. J. 9: 263.   DOI