Browse > Article
http://dx.doi.org/10.4014/jmb.1604.04090

Insecticidal Activity and Histopathological Effects of Vip3Aa Protein from Bacillus thuringiensis on Spodoptera litura  

Song, Feifei (Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University)
Lin, Yunfeng (Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University)
Chen, Chen (Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University)
Shao, Ensi (Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University)
Guan, Xiong (Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University)
Huang, Zhipeng (Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.10, 2016 , pp. 1774-1780 More about this Journal
Abstract
Vegetative insecticidal proteins (Vips) are insecticidal proteins synthesized by Bacillus thuringiensis during the vegetative stage of growth. In this study, Vip3Aa protein, obtained by in vitro expression of the vip3Aa gene from B. thuringiensis WB5, displayed high insecticidal activity against Spodoptera litura aside from Spodoptera exigua and Helicoverpa armigera. Bioassay results showed that the toxicity of Vip3Aa protein against S. litura larvae statistically decreased along with the increase of the age of the larvae, with LC50 = 2.609 ng/cm2 for neonatal larvae, LC50 = 28.778 ng/cm2 for first instar larvae, LC50 = 70.460 ng/cm2 for second instar larvae, and LC50 = 200.627 ng/cm2 for third instar larvae. The accumulative mortality of 100% larvae appeared at 72 h for all instars of S. litura larvae, when feeding respectively with 83.22, 213.04, 341.40, and 613.20 ng/cm2 of Vip3Aa toxin to the neonatal and first to third instar larvae. The histopathological effects of Vip3Aa toxin on the midgut epithelial cells of S. litura larvae was also investigated. The TEM observations showed wide damage of the epithelial cell in the midgut of S. litura larvae fed with Vip3Aa toxin.
Keywords
Vip3Aa protein; Spodoptera litura; toxicity; histopathological effects;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Abdelkefi-Mesrati L, Tounsi S, Jaoua S. 2005. Characterization of a novel vip3-type gene from Bacillus thuringiensis and evidence of its presence on a large plasmid. FEMS Microbiol. Lett. 244: 353-358.   DOI
2 Ahmad A, Javed MR, Rao AQ, Khan MA, Ahad A, Din SU, et al. 2015. In-silico determination of insecticidal potential of Vip3Aa-Cry1Ac fusion protein against lepidopteran targets using molecular docking. Front. Plant Sci. 6: 1081.
3 Liu JG, Yang AZ, Shen XH, Hua BG, Shi GL. 2011. Specific binding of activated Vip3Aa10 to Helicoverpa armigera brush border membrane vesicles results in pore formation. J. Invertebr. Pathol. 108: 92-97.   DOI
4 Lone SA, Yadav R, Malik A, Padaria JC. 2016. Molecular and insecticidal characterization of Vip3A protein producing Bacillus thuringiensis strains toxic against Helicoverpa armigera (Lepidoptera: Noctuidae). Can. J. Microbiol. 62: 179-190.   DOI
5 Baskar K, Ignacimuthu S. 2012. Antifeedant, larvicidal and growth inhibitory effects of ononitol monohydrate isolated from Cassia tora L. against Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Chemosphere 88: 384-388.   DOI
6 Ahmad M, Iqbal Arif M, Ahmad M. 2007. Occurrence of insecticide resistance in field populations of Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Crop Prot. 26: 809-817.   DOI
7 Asokan R, Swamy HM, Arora DK. 2012. Screening, diversity and partial sequence comparison of vegetative insecticidal protein (vip3A) genes in the local isolates of Bacillus thuringiensis Berliner. Curr. Microbiol. 64: 365-370.   DOI
8 Baranek J, Kaznowski A, Konecka E, Naimov S. 2015. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests. J. Invertebr. Pathol. 130: 72-81.   DOI
9 Palma L, de Escudero IR, Maeztu M, Caballero P, Muñoz D. 2013. Screening of vip genes from a Spanish Bacillus thuringiensis collection and characterization of two Vip3 proteins highly toxic to five lepidopteran crop pests. Biol. Control 66: 141-149.   DOI
10 Nicholson GM. 2007. Fighting the global pest problem: preface to the special toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon 49: 413-422.   DOI
11 Palma L, Hernandez-Rodriguez CS, Maeztu M, Hernandez-Martinez P, Ruiz de Escudero I, Escriche B, et al. 2012. Vip3C, a novel class of vegetative insecticidal proteins from Bacillus thuringiensis. Appl. Environ. Microbiol. 78: 7163-7165.   DOI
12 Palma L, Muñoz D, Berry C, Murillo J, Caballero P. 2014. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins 6: 3296-3325.   DOI
13 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI
14 Ben Hamadou-Charfi D, Boukedi H, Abdelkefi-Mesrati L, Tounsi S, Jaoua S. 2013. Agrotis segetum midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 differs from that of Cry1Ac toxin. J. Invertebr. Pathol. 114: 139-143.   DOI
15 Bergamasco VB, Mendes DR, Fernandes OA, Desiderio JA, Lemos MV. 2013. Bacillus thuringiensis Cry1Ia10 and Vip3Aa protein interactions and their toxicity in Spodoptera spp. (Lepidoptera). J. Invertebr. Pathol. 112: 152-158.   DOI
16 Ruiz de Escudero I, Banyuls N, Bel Y, Maeztu M, Escriche B, Munoz D, et al. 2014. A screening of five Bacillus thuringiensis Vip3A proteins for their activity against lepidopteran pests. J. Invertebr. Pathol. 117: 51-55.   DOI
17 Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P. 2011. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol. J. 9: 283-300.   DOI
18 Sattar S, Maiti MK. 2011. Molecular characterization of a novel vegetative insecticidal protein from Bacillus thuringiensis effective against sap-sucking insect pest. J. Microbiol. Biotechnol. 21: 937-946.   DOI
19 Bhalla R, Dalal M, Panguluri SK, Jagadish B, Mandaokar AD, Singh AK, et al. 2005. Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol. Lett. 243: 467-472.   DOI
20 Boukedi H, Ben Khedher S, Triki N, Kamoun F, Saadaoui I, Chakroun M, et al. 2015. Overproduction of the Bacillus thuringiensis Vip3Aa16 toxin and study of its insecticidal activity against the carob moth Ectomyelois ceratoniae. J. Invertebr. Pathol. 127: 127-129.   DOI
21 Caccia S, Chakroun M, Vinokurov K, Ferre J. 2014. Proteolytic processing of Bacillus thuringiensis Vip3A proteins by two Spodoptera species. J. Insect Physiol. 67: 76-84.   DOI
22 Wang Y, Choi JY, Roh JY, Liu Q, Tao XY, Park JB, et al. 2011. Genomic sequence analysis of granulovirus isolated from the tobacco cutworm, Spodoptera litura. PLoS One 6: e28163.   DOI
23 Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, et al. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806.
24 Sellami S, Cherif M, Abdelkefi-Mesrati L, Tounsi S, Jamoussi K. 2015. Toxicity, activation process, and histopathological effect of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 on Tuta absoluta. Appl. Biochem. Biotechnol. 175: 1992-1999.   DOI
25 Sena JA, Hernandez-Rodriguez CS, Ferre J. 2009. Interaction of Bacillus thuringiensis Cry1 and Vip3A proteins with Spodoptera frugiperda midgut binding sites. Appl. Environ. Microbiol. 75: 2236-2237.   DOI
26 Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziei MG. 1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA 93: 5389-5394.   DOI
27 Cai J, Xiao L, Yan B, Bin G, Chen Y, Ren G. 2006. Vip3A is responsible for the potency of Bacillus thuringiensis 9816C culture supernatant against Helicoverpa armigera and Spodoptera exigua. J. Gen. Appl. Microbiol. 52: 83-89.   DOI
28 Donovan WP, Donovan JC, Engleman JT. 2001. Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua. J. Invertebr. Pathol. 78: 45-51.   DOI
29 Warren GW. 1997. Vegetative insecticidal proteins: novel proteins for control of corn pests, pp. 109-121. In Carozzi NB, Koziel M (eds.). Advances in Insect Control: The Role of Transgenic Plants. Taylor & Francis, London.
30 Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ. 1997. The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl. Environ. Microbiol. 63: 532-536.
31 Fang J, Xu X, Wang P, Zhao JZ, Shelton AM, Cheng J, et al. 2007. Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Appl. Environ. Microbiol. 73: 956-961.   DOI
32 Figueiredo CS, Marucci SC, Tezza RID, Lemos MVF, Desidério JA. 2013. Characterization of the vip3A gene and toxicity of Vip3Aa50 protein to fall armyworm and velvetbean caterpillar. Pesqui. Agropecu. Bras. 48: 1220-1227.   DOI
33 Gouffon C, Van Vliet A, Van Rie J, Jansens S, Jurat-Fuentes JL. 2011. Binding sites for Bacillus thuringiensis Cry2Ae toxin on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin. Appl. Environ. Microbiol. 77: 3182-3188.   DOI
34 Abdelkefi-Mesrati L, Boukedi H, Dammak-Karray M, Sellami-Boudawara T, Jaoua S, Tounsi S. 2011. Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. J. Invertebr. Pathol. 106: 250-254.   DOI
35 Yu X, Zheng A, Zhu J, Wang S, Wang L, Deng Q, et al. 2011. Characterization of vegetative insecticidal protein vip genes of Bacillus thuringiensis from Sichuan Basin in China. Curr. Microbiol. 62: 752-757.   DOI
36 Zhou J, Zhang G, Zhou Q. 2012. Molecular characterization of cytochrome P450 CYP6B47 cDNAs and 5'-flanking sequence from Spodoptera litura (Lepidoptera: Noctuidae): its response to lead stress. J. Insect Physiol. 58: 726-736.   DOI
37 Zhu C, Ruan L, Peng D, Yu Z, Sun M. 2006. Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua. Lett. Appl. Microbiol. 42: 109-114.   DOI
38 Gulzar A, Wright DJ. 2015. Sub-lethal effects of Vip3A toxin on survival, development and fecundity of Heliothis virescens and Plutella xylostella. Ecotoxicology 24: 1815-1822.   DOI
39 Hernandez-Martinez P, Hernandez-Rodriguez CS, Rie JV, Escriche B, Ferre J. 2013. Insecticidal activity of Vip3Aa, Vip3Ad, Vip3Ae, and Vip3Af from Bacillus thuringiensis against lepidopteran corn pests. J. Invertebr. Pathol. 113: 78-81.   DOI
40 Abdelkefi-Mesrati L, Boukedi H, Chakroun M, Kamoun F, Azzouz H, Tounsi S, et al. 2011. Investigation of the steps involved in the difference of susceptibility of Ephestia kuehniella and Spodoptera littoralis to the Bacillus thuringiensis Vip3Aa16 toxin. J. Invertebr. Pathol. 107: 198-201.   DOI
41 Liao C, Heckel DG, Akhurst R. 2002. Toxicity of Bacillus thuringiensis insecticidal proteins for Helicoverpa armigera and Helicoverpa punctigera (Lepidoptera: Noctuidae), major pests of cotton. J. Invertebr. Pathol. 80: 55-63.   DOI
42 Hernandez-Rodriguez CS, Boets A, Van Rie J, Ferre J. 2009. Screening and identification of vip genes in Bacillus thuringiensis strains. J. Appl. Microbiol. 107: 219-225.   DOI
43 Lee MK, Miles P, Chen JS. 2006. Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts. Biochem. Biophys. Res. Commun. 339: 1043-1047.   DOI
44 Lee MK, Walters FS, Hart H, Palekar N, Chen JS. 2003. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab-endotoxin. Appl. Environ. Microbiol. 69: 4648-4657.   DOI