Browse > Article
http://dx.doi.org/10.4014/jmb.1603.03005

Functional Probiotic Characterization and In Vivo Cholesterol-Lowering Activity of Lactobacillus helveticus Isolated from Fermented Cow MilkS  

Damodharan, Karthiyaini (Center for Nutraceutical and Pharmaceutical Materials, College of Natural Science, Myongji University)
Palaniyandi, Sasikumar Arunachalam (Center for Nutraceutical and Pharmaceutical Materials, College of Natural Science, Myongji University)
Yang, Seung Hwan (Department of Biotechnology, Chonnam National University)
Suh, Joo Won (Center for Nutraceutical and Pharmaceutical Materials, College of Natural Science, Myongji University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.10, 2016 , pp. 1675-1686 More about this Journal
Abstract
We characterized the probiotic properties of Lactobacillus helveticus strains KII13 and KHI1 isolated from fermented cow milk by in vitro and in vivo studies. The strains exhibited tolerance to simulated orogastrointestinal condition, adherence to Caco-2 cells, and antimicrobial activity. Both L. helveticus strains produced bioactive tripeptides, isoleucylprolyl-proline and valyl-prolyl-proline, during fermentation of milk. KII13 showed higher in vitro cholesterol-lowering activity (47%) compared with KHI1 (28%) and L. helveticus ATCC 15009 (22%), and hence, it was selected for in vivo study of cholesterol-lowering activity in atherogenic diet-fed hypercholesterolemic mice. For the study, mice were divided into four groups (viz., normal diet control group, atherogenic diet control group (HCD), KII13-atherogenic diet group (HCD-KII13), and Lactobacillus acidophilus ATCC 43121-atherogenic diet group (HCD-L.ac) as positive control). The serum total cholesterol level was significantly decreased by 8.6% and 7.78% in the HCD-KII13 and HCD-L.ac groups (p < 0.05), respectively, compared with the HCD group. Low-density lipoprotein cholesterol levels in both HCD-KII13 and HCD-L.ac groups were decreased by 13% and 11%, respectively, compared with the HCD group (both, p < 0.05). Analysis of cholesterol metabolism-related gene expression in mice liver showed increased expression of LDLR and SREBF2 genes in mice fed with KII13. By comparing all the results, we conclude that L. helveticus KII13 could be used as a potential probiotic strain to produce antihypertensive peptides and reduce serum cholesterol.
Keywords
Probiotics; cholesterol lowering; Lactobacillus helveticus; antihypertensive; bioactive peptide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahire JJ, Bhat AA, Thakare JM, Pawar PB, Zope DG, Jain RM, Chaudhari BL. 2012. Cholesterol assimilation and biotransformation by Lactobacillus helveticus. Biotechnol. Lett. 34: 103-107.   DOI
2 Ahn T-G, Lee J-Y, Cheon S-Y, An H-J, Kook Y-B. 2013. Protective effect of Sam-Hwang-Sa-Sim-Tang against hepatic steatosis in mice fed a high-cholesterol diet. BMC Complement. Altern. Med. 13: 366.   DOI
3 Karska-Wysocki B, Bazo M, Smoragiewicz W. 2010. Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA). Microbiol. Res. 165: 674-686.   DOI
4 Kearney PM, Whelton M, Reynolds K, Whelton PK, He J. 2004. Worldwide prevalence of hypertension: a systematic review. J. Hypertension 22: 11-19.   DOI
5 Korhonen H, Pihlanto A. 2006. Bioactive peptides: production and functionality. Int. Dairy J. 16: 945-960.   DOI
6 Seppo L, Jauhiainen T, Poussa T, Korpela R. 2003. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. Am. J. Clin. Nutr. 77: 326-330.   DOI
7 Lievin-Le Moal V, Servin AL. 2014. Anti-infective activities of Lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin. Microbiol. Rev. 27: 167-199.   DOI
8 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402-408.   DOI
9 Maeno M, Yamamoto N, Takano T. 1996. Identification of an antihypertensive peptide from casein hydrolysate produced by a proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 79: 1316-1321.   DOI
10 Ammor MS, Florez AB, Mayo B. 2007. Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol. 24: 559-570.   DOI
11 Argyri AA, Zoumpopoulou G, Karatzas KA, Tsakalidou E, Nychas GJ, Panagou EZ, Tassou CC. 2013. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 33: 282-291.   DOI
12 Ashar MN, Prajapati JB. 1998. Bile tolerance, bile deconjugation and cholesterol reducing properties of dietary lactobacilli. Ind. J. Microbiol. 38: 145-148.
13 Ashar MN, Prajapati JB. 2000. Verification of hypocholesterolemic effect of fermented milk on human subjects with different cholesterol levels. Folia Microbiol. 45: 263-268.   DOI
14 Atassi F, Brassart D, Grob P, Graf F, Servin AL. 2006. In vitro antibacterial activity of Lactobacillus helveticus strain KS300 against diarrhoeagenic, uropathogenic and vaginosisassociated bacteria. J. Appl. Microbiol. 101: 647-654.   DOI
15 Begley M, Hill C, Gahan CG. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72: 1729-1738.   DOI
16 Brown MS, Goldstein JL. 1997. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89: 331-340.   DOI
17 Buck BL, Altermann E, Svingerud T, Klaenhammer TR. 2005. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 71: 8344-8351.   DOI
18 Nakamura Y, Yamamoto N, Sakai K, Takano T. 1995. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J. Dairy Sci. 78: 1253-1257.   DOI
19 Saito M, Seki M, Iida K-I, Nakayama H, Yoshida S-I. 2007. A novel agar medium to detect hydrogen peroxide-producing bacteria based on the Prussian blue-forming reaction. Microbiol. Immunol. 51: 889-892.   DOI
20 Seppo L, Jauhiainen T, Poussa T, Korpela R. 2003. A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am. J. Clin. Nutr. 77: 326-330.   DOI
21 Yeon SW, You YS, Kwon HS, Yang EH, Ryu JS, Kang BH, Kang J-H. 2010. Fermented milk of Lactobacillus helveticus IDCC3801 reduces beta-amyloid and attenuates memory deficit. J. Funct. Foods 2: 143-152.   DOI
22 Strahinic I, Lukic J, Terzic-Vidojevic A, Lozo J, Kojic M, Topisirovic L. 2013. Use of Lactobacillus helveticus BGRA43 for manufacturing fermented milk products. Food Technol. Biotechnol. 51: 257-265.
23 Takemura N, Okubo T, Sonoyama K. 2010. Lactobacillus plantarum strain no. 14 reduces adipocyte size in mice fed high-fat diet. Exp. Biol. Med. 235: 849-856.   DOI
24 Tanaka H, Doesburg K, Iwasaki T, Mierau I. 1999. Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci. 82: 2530-2535.   DOI
25 Cavallini DC, Suzuki JY, Abdalla DS, Vendramini RC, Pauly-Silveira ND, Roselino MN, et al. 2011. Influence of a probiotic soy product on fecal microbiota and its association with cardiovascular risk factors in an animal model. Lipids Health Dis. 10: 126.   DOI
26 Chauviere G, Coconnier M, Kerneis S, Fourniat J, Servin AL. 1992. Adhesion of human Lactobacillus acidophilus strain LB to human. J. Gen. Microbiol. 138: 1689-1696.   DOI
27 Chavez MN, Krone CL. 1976. Silicic acid thin-layer chromatography of conjugated and free bile acids. J. Lipid Res. 17: 545-547.
28 Chung Y-C, Jin H-M, Cui Y, Kim DS, Jung JM, Park J-I, et al. 2014. Fermented milk of Lactobacillus helveticus IDCC3801 improves cognitive functioning during cognitive fatigue tests in healthy older adults. J. Funct. Foods 10: 465-474.   DOI
29 Cohen DE. 2008. Balancing cholesterol synthesis and absorption in the gastrointestinal tract. J. Clin. Lipidol. 2: S1-S3.   DOI
30 Damodharan K, Lee YS, Palaniyandi SA, Yang SH, Suh JW. 2015. Preliminary probiotic and technological characterization of Pediococcus pentosaceus strain KID7 and in vivo assessment of its cholesterol-lowering activity. Front. Microbiol. 6: 768.   DOI
31 Degirolamo C, Rainaldi S, Bovenga F, Murzilli S, Moschetta A. 2014. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep. 7: 12-18.   DOI
32 Tanida M, Shen J, Maeda K, Horii Y, Yamano T, Fukushima Y, Nagai K. 2008. High-fat diet-induced obesity is attenuated by probiotic strain Lactobacillus paracasei ST11 (NCC2461) in rats. Obes. Res. Clin. Pract. 2: I-II.   DOI
33 Taverniti V, Guglielmetti S. 2012. Health-promoting properties of Lactobacillus helveticus. Front. Microbiol. 3: 392.   DOI
34 Trautwein EA, Rieckhoff D, Erbersdobler HF. 1998. Dietary inulin lowers plasma cholesterol and triacylglycerol and alters biliary bile acid profile in hamsters. J. Nutr. 128: 1937-1943.   DOI
35 Tuo Y, Yu H, Ai L, Wu Z, Guo B, Chen W. 2013. Aggregation and adhesion properties of 22 Lactobacillus strains. J. Dairy Sci. 96: 4252-4257.   DOI
36 Wang H, Chen G, Ren D, Yang S-T. 2014. Hypolipidemic activity of Okra is mediated through inhibition of lipogenesis and upregulation of cholesterol degradation. Phytother. Res. 28: 268-273.   DOI
37 Wiegand I, Hilpert K, Hancock RE. 2008. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3: 163-175.   DOI
38 Yamamoto N, Akino A, Takano T. 1994. Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 77: 917-922.   DOI
39 Yamamoto N, Akino A, Takano T. 2014. Antihypertensive effects of different kinds of fermented milk in spontaneously hypertensive rats. Biosci. Biotechnol. Biochem. 58: 776-778.   DOI
40 Dimitrov Z, Gotova I, Chorbadjiyska E. 2014. Characterization of the adhesive factors of selected probiotics to Caco-2 epithelium cell line. Biotechnol. Biotechnol. Equip. 28: 1079-1083.   DOI
41 EFSA. 2012. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 10: 2740.   DOI
42 EFSA. 2007. The introduction of a qualified presumption of safety (QPS) approach for assessment of selected microorganisms referred to EFSA. EFSA J. 587: 1-16.
43 FAO/WHO. 2001. Expert consultation on health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. FAO/WHO, Córdoba, Argentina.
44 Fortina MG, Nicastro G, Carminati D, Neviani E, Manachini PL. 1998. Lactobacillus helveticus heterogeneity in natural cheese starters: the diversity in phenotypic characteristics. J. Appl. Microbiol. 84: 72-80.   DOI
45 Friedewald WT, Levy RI, Fredrickson DS. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18: 499-502.
46 Gonzalez-Gonzalez C, Gibson T, Jauregi P. 2013. Novel probiotic-fermented milk with angiotensin I-converting enzyme inhibitory peptides produced by Bifidobacterium bifidum MF 20/5. Int. J. Food Microbiol. 167: 131-137.   DOI
47 Gyarfas I, Keltai M, Salim Y. 2006. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries in a case-control study based on the INTERHEART study. Orv. Hetil. 147: 675-686.
48 Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. 2014. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11: 506-514.   DOI
49 Hu Y, Stromeck A, Loponen J, Lopes-Lutz D, Schieber A, Ganzle MG. 2011. LC-MS/MS quantification of bioactive angiotensin I-converting enzyme inhibitory peptides in rye malt sourdoughs. J. Agric. Food Chem. 59: 11983-11989.   DOI
50 Lye HS, Rahmat-Ali GR, Liong M-T. 2010. Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. Int. Diary J. 20: 169-175.   DOI
51 Jebava I, Chuat V, Lortal S, Valence F. 2014. Peptidoglycan hydrolases as species-specific markers to differentiate Lactobacillus helveticus from Lactobacillus gallinarum and other closely related homofermentative lactobacilli. Curr. Microbiol. 68: 551-557.   DOI
52 Jiang J, Hang X, Zhang M, Liu X, Li D, Yang H. 2010. Diversity of bile salt hydrolase activities in different lactobacilli toward human bile salts. Ann. Microbiol. 60: 81-88.   DOI
53 Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR. 2008. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA 105: 13580-13585.   DOI
54 Yamamoto N, Maeno M, Takano T. 1999. Purification and characterization of an antihypertensive peptide from a yogurt-like product fermented by Lactobacillus helveticus CPN4. J. Dairy Sci. 82: 1388-1393.   DOI