Browse > Article
http://dx.doi.org/10.4014/jmb.1410.10022

Construction of a Shuttle Vector for Heterologous Expression of a Novel Fungal α-Amylase Gene in Aspergillus oryzae  

Yin, Yanchen (State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology)
Mao, Youzhi (State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology)
Yin, Xiaolie (State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology)
Gao, Bei (State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology)
Wei, Dongzhi (State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.7, 2015 , pp. 988-998 More about this Journal
Abstract
The filamentous fungus Aspergillus oryzae is a well-known expression host used to express homologous and heterologous proteins in a number of industrial applications. To facilitate higher yields of proteins of interest, we constructed the pAsOP vector to express heterologous proteins in A. oryzae. pAsOP carries a selectable marker, pyrG, derived from Aspergillus nidulans, and a strong promoter and a terminator of the amyB gene derived from A. oryzae. pAsOP transformed A. oryzae efficiently via the PEG-CaCl2-mediated transformation method. As proof of concept, green fluorescent protein (GFP) was successfully expressed in A. oryzae transformed by pAsOP-GFP. Additionally, we identified a novel fungal α-amylase (PcAmy) gene from Penicillium sp. and cloned the gene into the vector. After transformation by pAsOPPcAmy, the α-amylase PcAmy from Penicillium sp. was successfully expressed in a heterologous host system for the first time. The α-amylase activity in the A. oryzae transformant was increased by 62.3% compared with the untransformed A. oryzae control. The PcAmy protein produced in the system had an optimum pH of 5.0 and optimum temperature of 30oC. As a cold-adapted enzyme, PcAmy shows potential value in industrial applications because of its high catalytic activity at low temperature. Furthermore, the expression vector reported in this study provides promising utility for further scientific research and biotechnological applications.
Keywords
Aspergillus oryzae; Penicillium sp.; α-amylase; heterologous expression;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Segato F, Damásio AR, Gonçalves TA, de Lucas RC, Squina FM, Decker SR, Prade RA. 2012. High-yield secretion of multiple client proteins in Aspergillus. Enzyme Microb. Technol. 51: 100-106.   DOI
2 Silar P. 1995. Two new easy to use vectors for transformations. Fungal Genet. Newsl. 42: 73.
3 Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A. 2006. α-Amylases from microbial sources - an overview on recent developments. Food Technol. Biotechnol. 44: 173-184.
4 Tada S, Iimura Y, Gomi K, Takahashi K, Hara S, Yoshizawa K. 1989. Cloning and nucleotide sequence of the genomic Taka-amylase A gene of Aspergillus oryzae. Agric. Biol. Chem. 53: 593-599.   DOI
5 Tsuchiya K, Nagashima T, Yamamoto Y, Gomi K, Kitamoto K, Kumagai C, Tamura G. 1994. High level secretion of calf chymosin using a glucoamylase-prochymosin fusion gene in Aspergillus oryzae. Biosci. Biotechnol. Biochem. 58: 895-899.   DOI
6 Tsuchiya K, Tada S, Gomi K, Kitamoto K, Kumagai C, Jigami Y, Tamura G. 1992. High level expression of the synthetic human lysozyme gene in Aspergillus oryzae. Appl. Microbiol. Biotechnol. 38: 109-114.   DOI
7 Vizcaino-Caston I, Wyre C, Overton TW. 2012. Fluorescent proteins in microbial biotechnology - new proteins and new applications. Biotechnol. Lett. 4: 175-186.   DOI
8 Willger SD, Cornish EJ, Chung D, Fleming BA, Lehmann MM, Puttikamonkul S, Cramer RA. 2012. Dsc orthologs are required for hypoxia adaptation, triazole drug responses, and fungal virulence in Aspergillus fumigatus. Eukaryot. Cell 11: 1557-1567.   DOI
9 Yoo YJ, Hong J, Hatch RT. 1987. Comparison of α-amylase activities from different assay methods. Biotechnol. Bioeng. 30: 147-151.   DOI
10 Mabashi Y, Kikuma T, Maruyama J, Arioka M, Kitamoto K. 2006. Development of a versatile expression plasmid construction system for Aspergillus oryzae and its application to visualization of mitochondria. Biosci. Biotechnol. Biochem. 70: 1882-1889.   DOI
11 Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, et al. 2005. Genome sequencing and analysis of Aspergillus oryzae. Nature 438: 1157-1161.   DOI
12 Malagnac F, Lalucque H, Lepère G, Silar P. 2004. Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genet. Biol. 41: 982-997.   DOI
13 Meyer V, Wu B, Ram AF. 2011. Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnol. Lett. 33: 469-476.   DOI
14 Minetoki T, Gomi K, Kitamoto K, Kumagai C, Tamura G. 1995. Nucleotide sequence and expression of alpha-glucosidaseencoding gene (agdA) from Aspergillus oryzae. Biosci. Biotechnol. Biochem. 59: 1516-1521.   DOI
15 Nouadri T, Meraihi Z, Shahrazed DD, Leila B. 2010. Purification and characterization of the α-amylase isolated from Penicillium camemberti PL21. Afr. J. Biochem. Res. 4: 155-162.
16 Guo S, Tang JJ, Wei DZ, Wei W. 2014. Construction of a shuttle vector for protein secretory expression in Bacillus subtilis and the application of the mannanase functional heterologous expression. J. Microbiol. Biotechnol. 24: 431-439.   DOI
17 Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C. 2002. Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol. 20: 200-206.   DOI
18 Schmitt E, Eilinghoff B, Olliger R, Decker H, Kück U. 2002. Development of molecular tools for the mulundocandin producer Aspergillus sydowii: DNA-mediated transformation and reporter gene expression. Appl. Microbiol. Biotechnol. 58: 625-631.   DOI
19 Gottesman S. 1990. Minimizing proteolysis in Escherichia coli: genetic solutions. Methods Enzymol. 185: 119-129.   DOI
20 Hata Y, Kitamoto K, Gomi K, Kumagai C, Tamura G, Hara S. 1991. The glucoamylase cDNA from Aspergillus oryzae: its cloning, nucleotide sequence, and expression in Saccharomyces cerevisiae. Agric. Biol. Chem. 55: 941-949.   DOI
21 Hata Y, Tsuchiya K, Kitamoto K, Gomi K, Kumagai C, Tamura G, Hara S. 1991. Nucleotide sequence and expression of the glucoamylase-encoding gene (glaA) from Aspergillus oryzae. Gene 108: 145-150.   DOI
22 Kitamoto K. 2002. Molecular biology of the koji molds. Adv. Appl. Microbiol. 51: 129-154.   DOI
23 Liu XD, Xu Y. 2008. A novel raw starch digesting alphaamylase from a newly isolated Bacillus sp. YX-1: purification and characterization. Bioresour. Technol. 99: 4315-4320.   DOI
24 Lv D, Wang W, Wei D. 2012. Construction of two vectors for gene expression in Trichoderma reesei. Plasmid 67: 67-71.   DOI
25 Barbesgaard P, Heldt-Hansen HP, Diderichsen B. 1992. On the safety of Aspergillus oryzae: a review. Appl. Microbiol. Biotechnol. 36: 569-572.   DOI
26 Goosen T, Bloemheuvel G, Gysler C, de Bie DA, van den Broek HW, Swart K. 1987. Transformation of Aspergillus niger using the homologous orotidine-5’-phosphate-decarboxylase gene. Curr. Genet. 11: 499-503.   DOI
27 Gordon CL, Khalaj V, Ram AF, Archer DB, Brookman JL, Trinci AP, et al. 2000. Glucoamylase : : green fluorescent protein fusions to monitor protein secretion in Aspergillus niger. Microbiology 146: 415-426.   DOI
28 Balkan B, Ertan F. 2005. Production and properties of α- amylase from Penicillium chrysogenum and its application in starch hydrolysis. Prep. Biochem. Biotechnol. 35: 169-178.   DOI
29 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI
30 Chalfie M. 1995. Green fluorescent protein. Photochem. Photobiol. 62: 651-656.   DOI
31 Damasio ARD, Silva TM, Almeida FBD, Squina FM, Ribeiro DA, Leme AFP, et al. 2011. Heterologous expression of anAspergillus niveus xylanase GH11 in Aspergillus nidulans and its characterization and application. Process Biochem. 46: 1236-1242.   DOI
32 Doyle EM, Kelly CT, Fogarty WM. 1989. The high maltoseproducing α-amylase of Penicillium expansum. Appl. Microbiol. Biotechnol. 30: 492-496.   DOI
33 Fernández-Ábalos JM, Fox H, Pitt C, Wells B, Doonan JH. 1998. Plant-adapted green fluorescent protein is a versatile vital reporter for gene expression, protein localization and mitosis in the filamentous fungus, Aspergillus nidulans. Mol. Microbiol. 27: 121-130.   DOI
34 Akao T, Yamaguchi M, Yahara A, Yoshiuchi K, Fujita H, Yamada O, et al. 2006. Cloning and expression of 1, 2-α- mannosidase gene (fmanIB) from filamentous fungus Aspergillus oryzae: in vivo visualization of the FmanIBp-GFP fusion protein. Biosci. Biotechnol. Biochem. 70: 471-479.   DOI
35 Fleissner A, Dersch P. 2010. Expression and export: recombinant protein production systems for Aspergillus. Appl. Microbiol. Biotechnol. 87: 1255-1270.   DOI
36 Gangavaram LP, Mchunu N, Ramakrishnan P, Singh S, Permaul K. 2009. Improved electroporation-mediated nonintegrative transformation of Thermomyces lanuginosus. J. Microbiol. Methods 77: 159-164.   DOI