Browse > Article
http://dx.doi.org/10.4014/jmb.1505.05036

Biosynthesis of Polymyxins B, E, and P Using Genetically Engineered Polymyxin Synthetases in the Surrogate Host Bacillus subtilis  

Kim, Se-Yu (Super-Bacteria Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Park, Soo-Young (Super-Bacteria Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Choi, Soo-Keun (Super-Bacteria Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Park, Seung-Hwan (Super-Bacteria Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.7, 2015 , pp. 1015-1025 More about this Journal
Abstract
The development of diverse polymyxin derivatives is needed to solve the toxicity and resistance problems of polymyxins. However, no platform has generated polymyxin derivatives by genetically engineering a polymyxin synthetase, which is a nonribosomal peptide synthetase. In this study, we present a two-step approach for the construction of engineered polymyxin synthetases by substituting the adenylation (A) domains of polymyxin A synthetase, which is encoded by the pmxABCDE gene cluster of Paenibacillus polymyxa E681. First, the seventh L-threonine-specific A-domain region in pmxA was substituted with the L-leucine-specific A-domain region obtained from P. polymyxa ATCC21830 to make polymyxin E synthetase, and then the sixth D-leucine-specific A-domain region (A6-D-Leu-domain) was substituted with the D-phenylalanine-specific A-domain region (A6-D-Phe-domain) obtained from P. polymyxa F4 to make polymyxin B synthetase. This step was performed in Escherichia coli on a pmxA-containing fosmid, using the lambda Red recombination system and the sacB gene as a counter-selectable marker. Next, the modified pmxA gene was fused to pmxBCDE on the chromosome of Bacillus subtilis BSK4dA, and the resulting recombinant strains BSK4-PB and BSK4-PE were confirmed to produce polymyxins B and E, respectively. We also succeeded in constructing the B. subtilis BSK4-PP strain, which produces polymyxin P, by singly substituting the A6-D-Leu-domain with the A6-D-Phe-domain. This is the first report in which polymyxin derivatives were generated by genetically engineering polymyxin synthetases. The two recombinant B. subtilis strains will be useful for improving the commercial production of polymyxins B and E, and they will facilitate the generation of novel polymyxin derivatives.
Keywords
Polymyxin synthetase; A-domain engineering; polymyxin B; polymyxin E; heterologous expression; Bacillus subtilis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Vaara M, Fox J, Loidl G, Siikanen O, Apajalahti J, Hansen F, et al. 2008. Novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents. Antimicrob. Agents Chemother. 52: 3229-3236.   DOI
2 Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM. 2009. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460: 894-898.   DOI
3 Zavascki AP, Goldani LZ, Li J, Nation RL. 2007. Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J. Antimicrob. Chemother. 60: 1206-1215.   DOI
4 Zobel S, Kumpfmüller J, Süssmuth RD, Schweder T. 2015. Bacillus subtilis as heterologous host for the secretory production of the non-ribosomal cyclodepsipeptide enniatin. Appl. Microbiol. Biotechnol. 99: 681-691.   DOI
5 Park S-Y, Choi S-K, Kim J, Oh T-K, Park S-H. 2012. Efficient production of polymyxin in the surrogate host Bacillus subtilis by introducing a foreign ectB gene and disrupting the abrB gene. Appl. Environ. Microbiol. 78: 4194-4199.   DOI
6 Schneider A, Stachelhaus T, Marahiel M. 1998. Targeted alteration of the substrate specificity of peptide synthetases by rational module swapping. Mol. Gen. Genet. 257: 308-318.   DOI
7 Shaheen M, Li J, Ross AC, Vederas JC, Jensen SE. 2011. Paenibacillus polymyxa PKB1 produces variants of polymyxin B-type antibiotics. Chem. Biol. 18: 1640-1648.   DOI
8 Sharma S, Wu A, Chandramouli N, Fotsch C, Kardash G, Bair K. 1999. Solid-phase total synthesis of polymyxin B1. J. Pept. Res. 53: 501-506.   DOI
9 Sieber SA, Marahiel MA. 2005. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem. Rev. 105: 715-738.   DOI
10 Stachelhaus T, Schneider A, Marahiel MA. 1995. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269: 69-72.   DOI
11 Storm DR, Rosenthal KS, Swanson PE. 1977. Polymyxin and related peptide antibiotics. Annu. Rev. Biochem. 46: 723-763.   DOI
12 Tambadou F, Caradec T, Gagez A-L, Bonnet A, Sopéna V, Bridiau N, et al. 2015. Characterization of the colistin (polymyxin E1 and E2) biosynthetic gene cluster. Arch. Microbiol. 197: 521-532.   DOI
13 Tsubery H, Ofek I, Cohen S, Eisenstein M, Fridkin M. 2002. Modulation of the hydrophobic domain of polymyxin B nonapeptide: effect on outer-membrane permeabilization and lipopolysaccharide neutralization. Mol. Pharmacol. 62: 1036-1042.   DOI
14 Martin NI, Hu H, Moake MM, Churey JJ, Whittal R, Worobo RW, Vederas JC. 2003. Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J. Biol. Chem. 278: 13124-13132.   DOI
15 Niu B, Vater J, Rueckert C, Blom J, Lehmann M, Ru J-J, et al. 2013. Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiol. 13: 137.   DOI
16 Miao V, Coëffet-Le Gal M-F, Nguyen K, Brian P, Penn J, Whiting A, et al. 2006. Genetic engineering in Streptomyces roseosporus to produce hybrid lipopeptide antibiotics. Chem. Biol. 13: 269-276.   DOI
17 Michalopoulos A, Falagas ME. 2008. Colistin and polymyxin B in critical care. Crit. Care Clin. 24: 377-391.   DOI
18 Mootz HD, Schwarzer D, Marahiel MA. 2002. Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem 3: 490-504.   DOI
19 Okimura K, Ohki K, Sato Y, Ohnishi K, Sakura N. 2007. Semi-synthesis of polymyxin B (2-10) and colistin (2-10) analogs employing the trichloroethoxycarbonyl (Troc) group for side chain protection of alpha, gamma-diaminobutyric acid residues. Chem. Pharm. Bull. 55: 1724-1730.   DOI
20 Orwa J, Govaerts C, Busson R, Roets E, Van Schepdael A, Hoogmartens J. 2001. Isolation and structural characterization of polymyxin B components. J. Chromatogr. A 912: 369-373.   DOI
21 Park S-H, Kim JF, Lee C, Choi S-K, Jeong H, Kim S-B, et al. 2012. Polymyxin synthetase and gene cluster thereof. US Patent 8,329,430.
22 Evans ME, Feola DJ, Rapp RP. 1999. Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria. Ann. Pharmacother. 33: 960-967.   DOI
23 Harwood CR, Cutting SM. 1990. Molecular Biological Methods for Bacillus, p. 33-36. John Wiley & Sons, Chichester, UK.
24 Komura S, Kurahashi K. 1980. Biosynthesis of polymyxin E. III. Total synthesis of polymyxin E by a cell-free enzyme system. Biochem. Biophys. Res. Commun. 95: 1145-1151.   DOI
25 Jensen K, Østergaard PR, Wilting R, Lassen SF. 2010. Identification and characterization of a bacterial glutamic peptidase. BMC Biochem. 11: 47.   DOI
26 Kim JF, Jeong H, Park S-Y, Kim S-B, Park YK, Choi S-K, et al. 2010. Genome sequence of the polymyxin-producing plant-probiotic rhizobacterium Paenibacillus polymyxa E681. J. Bacteriol. 192: 6103-6104.   DOI
27 Kline T, Holub D, Therrien J, Leung T, Ryckman D. 2001. Synthesis and characterization of the colistin peptide polymyxin E1 and related antimicrobial peptides. J. Pept. Res. 57: 175-187.
28 Koyama Y, Kurosasa A, Tsuchiya A, Takakuta K. 1950. A new antibiotic ‘colistin’ produced by spore-forming soil bacteria. J. Antibiot. 3: 457-458.
29 Li J, Nation RL, Milne RW, Turnidge JD, Coulthard K. 2005. Evaluation of colistin as an agent against multi-resistant gram-negative bacteria. Int. J. Antimicrob. Agents 25: 11-25.   DOI
30 Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, Paterson DL. 2006. Colistin: the re-emerging antibiotic for multidrug-resistant gram-negative bacterial infections. Lancet Infect. Dis. 6: 589-601.   DOI
31 Chihara S, Tobita T, Yahata M, Ito A, Koyama Y. 1973. Enzymatic degradation of colistin isolation and identification of α-N-acyl α, γ-diaminobutyric acid and colistin nonapeptide. Agric. Biol. Chem. 37: 2455-2463.   DOI
32 Eppelmann K, Doekel S, Marahiel MA. 2001. Engineered biosynthesis of the peptide antibiotic bacitracin in the surrogate host Bacillus subtilis. J. Biol. Chem. 276: 34824-34831.   DOI
33 Choi S-K, Park S-Y, Kim R, Kim S-B, Lee C-H, Kim JF, Park S-H. 2009. Identification of a polymyxin synthetase gene cluster of Paenibacillus polymyxa and heterologous expression of the gene in Bacillus subtilis. J. Bacteriol. 191: 3350-3358.   DOI
34 Doekel S, Eppelmann K, Marahiel MA. 2002. Heterologous expression of nonribosomal peptide synthetases in B. subtilis: construction of a bi-functional B. subtilis/E. coli shuttle vector system. FEMS Microbiol. Lett. 216: 185-191.   DOI