Browse > Article
http://dx.doi.org/10.4014/jmb.1411.11078

Improved 1,3-Propanediol Synthesis from Glycerol by the Robust Lactobacillus reuteri Strain DSM 20016  

Ricci, Maria Antonietta (Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari)
Russo, Annamaria (Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari)
Pisano, Isabella (Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari)
Palmieri, Luigi (Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari)
de Angelis, Maria (Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy)
Agrimi, Gennaro (Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.6, 2015 , pp. 893-902 More about this Journal
Abstract
Various Lactobacillus reuteri strains were screened for the ability to convert glycerol to 1,3-propanediol (1,3-PDO) in a glycerol-glucose co-fermentation. Only L. reuteri DSM 20016, a well-known probiotic, was able to efficiently carry out this bioconversion. Several process strategies were employed to improve this process. Co2+ addition to the fermentation medium, led to a high product titer (46 g/l) of 1,3-PDO and to improved biomass synthesis. L. reuteri DSM 20016 produced also ca. 3 µg/g of cell dry weight of vitamin B12, conferring an economic value to the biomass produced in the process. Incidentally, we found that L. reuteri displays the highest resistance to Co2+ ions ever reported for a microorganism. Two waste materials (crude glycerol from biodiesel industry and spruce hydrolysate from paper industry) alone or in combination were used as feedstocks for the production of 1,3-PDO by L. reuteri DSM 20016. Crude glycerol was efficiently converted into 1,3-PDO although with a lower titer than pure glycerol (33.3 vs. 40.7 g/l). Compared with the fermentation carried out with pure substrates, the 1,3-PDO produced was significantly lower (40.7 vs. 24.2 g/l) using cellulosic hydrolysate and crude glycerol, but strong increases of the maximal biomass produced (2.9 vs 4.3 g/l CDW) and of the glucose consumption rate were found. The results of this study lay the foundation for further investigations to exploit the biotechnological potential of L. reuteri DSM 20016 to produce 1,3-PDO and vitamin B12 using industry byproducts.
Keywords
1,3-Propanediol; L. reuteri; cobalt; vitamin B12; glycerol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pflügl S, Marx H, Mattanovich D, Sauer M. 2014. Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1,3-propanediol by Lactobacillus diolivorans. Bioresour. Technol. 152: 499-504.   DOI   ScienceOn
2 Santos F, Vera JL, van der Heijden R, Valdez G, de Vos WM, Sesma F, Hugenholtz J. 2008. The complete coenzyme B12 biosynthesis gene cluster of Lactobacillus reuteri CRL1098. Microbiology 154: 81-93.   DOI   ScienceOn
3 Saxena RK, Anand P, Saran S, Isar J. 2009. Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol. Adv. 27: 895-913.   DOI   ScienceOn
4 Sriramulu DD, Liang M, Hernandez-Romero D, Raux-Deery E, Lünsdorf H, Parsons JB, et al. 2008. Lactobacillus reuteri DSM 20016 produces cobalamin-dependent diol dehydratase in metabolosomes and metabolizes 1,2-propanediol by disproportionation. J. Bacteriol. 190: 4559-4567.   DOI   ScienceOn
5 Taranto MP, Vera JL, Hugenholtz J, De Valdez GF, Sesma F. 2003. Lactobacillus reuteri CRL1098 produces cobalamin. J. Bacteriol. 185: 5643-5647.   DOI
6 Florencio L, Field JA, Lettinga G. 1994. Importance of cobalt for individual trophic groups in an anaerobic methanoldegrading consortium. Appl. Environ. Microbiol. 60: 227-234.
7 Himmi EH, Bories A, Barbirato F. 1999. Nutrient requirements for glycerol conversion to 1,3-propanediol by Clostridium butyricum. Bioresour. Technol. 67: 123-128.   DOI   ScienceOn
8 Jolly J, Hitzmann B, Ramalingam S, Ramachandran KB. 2014. Biosynthesis of 1,3-propanediol from glycerol with Lactobacillus reuteri: effect of operating variables. J. Biosci. Bioeng. 118: 188-194.   DOI   ScienceOn
9 Ko Y, Ashok S, Ainala SK, Sankaranarayanan M, Chun AY, Jung GY, Park S. 2014. Coenzyme B12 can be produced by engineered Escherichia coli under both anaerobic and aerobic conditions. Biotechnol. J. 9: 1526-1535.   DOI   ScienceOn
10 Marley EC, Mackay E, Young G. 2009. Characterisation of vitamin B12 immunoaffinity columns and method development for determination of vitamin B12 in a range of foods, juices and pharmaceutical products using immunoaffinity cleanup and high performance liquid chromatography with UV detection. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 26: 282-288.   DOI   ScienceOn
11 Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, et al. 2008. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res. 15: 151-161.   DOI   ScienceOn
12 Mu Y, Teng H, Zhang DJ, Wang W, Xiu ZL. 2006. Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol. Lett. 28: 1755-1759.   DOI
13 Nakamura CE, Whited GM. 2003. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14: 454-459.   DOI   ScienceOn
14 Baeza-Jiménez R, Lopez-Martinez LX, Cruz-Medina JDl, Espinosa-de-los-Monteros JJ, García-Galindo HS. 2011. Effect of glucose on 1,3-propanediol production by Lactobacillus reuteri. Rev. Mex. Ing. Quím. 10: 39-46.
15 Blaschek HP, Ezeji TC, Scheffran J. 2010. Biofuels from Agricultural Wastes and Byproducts. Blackwell Publishing.
16 Cheng X, Chen W, Peng WF, Li KT. 2014. Improved vitamin B12 fermentation process by adding rotenone to regulate the metabolism of Pseudomonas denitrificans. Appl. Biochem. Biotechnol. 173: 673-681.   DOI   ScienceOn
17 Dobson R, Gray V, Rumbold K. 2012. Microbial utilization of crude glycerol for the production of value-added products. J. Ind. Microbiol. Biotechnol. 39: 217-226.   DOI   ScienceOn
18 de Man JC, Rogosa M, Sharpe ME. 1960. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23: 130-135.   DOI
19 de Vrese M, Marteau PR. 2007. Probiotics and prebiotics: effects on diarrhea. J. Nutr. 137: 803S-811S.   DOI
20 Dishisha T, Pereyra LP, Pyo SH, Britton RA, Hatti-Kaul R. 2014. Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Microb. Cell Fact. 13: 76.   DOI   ScienceOn
21 El-Ziney MG, Arneborg N. 1998. Characterization of growth and metabolite production of Lactobacillus reuteri during glucose/glycerol cofermentation in batch and continuous cultures. Biotechnol. Lett. 20: 913-916.   DOI   ScienceOn
22 Sauer M, Porro D, Mattanovich D, Branduardi P. 2008. Microbial production of organic acids: expanding the markets. Trends Biotechnol. 26: 100-108.   DOI   ScienceOn
23 Tobajas M, Mohedano AF, Casas JA, Rodríguez JJ. 2009. Unstructured kinetic model for reuterin and 1,3-propanediol production by Lactobacillus reuteri from glycerol/glucose cofermentation. J. Chem. Technol. Biotechnol. 84: 675-680.   DOI   ScienceOn
24 van Niel EW, Larsson CU, Lohmeier-Vogel EM, Radstrom P. 2012. The potential of biodetoxification activity as a probiotic property of Lactobacillus reuteri. Int. J. Food Microbiol. 152: 206-210.   DOI   ScienceOn
25 Pflügl S, Marx H, Mattanovich D, Sauer M. 2012. 1,3-Propanediol production from glycerol with Lactobacillus diolivorans. Bioresour. Technol. 119: 133-140.   DOI   ScienceOn
26 Santos F, Teusink B, Molenaar D, van Heck M, Wels M, Sieuwerts S, et al. 2009. Effect of amino acid availability on vitamin B12 production in Lactobacillus reuteri. Appl. Environ. Microbiol. 75: 3930-3936.   DOI   ScienceOn