Browse > Article
http://dx.doi.org/10.4014/jmb.1411.11030

Radical Scavenging Activities of Undaria pinnatifida Extracts Fermented with Cordyceps militaris Mycelia  

Kim, Yon-Suk (Department of Biotechnology, Konkuk University)
Kim, Eun-Kyung (Division of Food Bioscience, Konkuk University)
Hwang, Jin-Woo (Department of Biotechnology, Konkuk University)
Han, Young-Ki (Department of Biotechnology, Konkuk University)
Kim, Seong-Eun (Department of Biotechnology, Konkuk University)
Jeong, Jae-Hyun (Department of Food and Biotechnology, Korea National University of Transportation)
Moon, Sang-Ho (Nokyong Research Center, Konkuk University)
Jeon, Byong-Tae (Nokyong Research Center, Konkuk University)
Park, Pyo-Jam (Department of Biotechnology, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.6, 2015 , pp. 820-827 More about this Journal
Abstract
The present study was performed to investigate the various radical scavenging activities of fermented Undaria pinnatifida by the mycelia fermentation method. U. pinnatifida was fermented with Cordyceps militaris (C. militaris ) mycelia using solid culture and compared with unfermentated U. pinnatifida and C. militaris mycelia for antioxidant activities. The various radical scavenging activities of extracts from U. pinnatifida fermented with C. militaris mycelia (FUCM) were evaluated by electron spin resonance. The antioxidant activities of the FUCM extracts were assayed for ferric reducing antioxidant power, 2,2'-azinobis-(3-ethybenzothiazoline-6-sulfonic acid) radical scavenging activity, and oxygen radical absorption capacity. The free radical scavenging activity of FUCM extracts was higher than that of C. militaris mycelia or U. pinnatifida alone. FUCM extracts were significantly (p < 0.05) increased up to 35 times, 10 times, and 16 times that of U. pinnatifida extracts on DPPH, alkyl, and hydroxyl radical scavenging activities, respectively. These results indicate that FUCM extracts have different chemical ingredients from U. pinnatifida and could provide beneficial antioxidant activity.
Keywords
Radical scavenging; Cordyceps militaris; electron spin resonance; fermentation; Undaria pinnatifida;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahn YJ, Park SJ, Lee SG, Shin SC, Choi DH. 2000. Cordycepin: selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp. J. Agric. Food Chem. 48: 2744-2748.   DOI   ScienceOn
2 Baltručaityt V, Venskutonis PR, Čeksteryt V. 2007. Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chem. 101: 502-514.   DOI   ScienceOn
3 Bichra M, El-Modafar C, El-Abbassi A, Bouamama H, Benkhalti F. 2013. Antioxidant activities and phenolic profile of six Moroccan selected herbs. J. Microbiol. Biotechnol. Food Sci. 2: 2320-2338.
4 Cádiz-Gurrea MDLL, Fernández-Arroyo S, Joven J, SeguraCarretero A. 2012. Comprehensive characterization by UHPLCESI-Q-TOF-MS from an Eryngium bourgatii extract and their antioxidant and anti-inflammatory activities. Food Res. Int. 50: 197-204.   DOI   ScienceOn
5 Cunningham KG, Hutchinson SA, Manson W, Spring FS. 1951. Cordycepin, a metabolic product from cultures of Cordyceps militaris (Linn.) link. Part I. Isolation and characterisation. J. Chem. Soc. 1951: 2299-2300.   DOI
6 Dean RT, Davies MJ. 1993. Reactive species and their accumulation on radical damaged proteins. Trends Biochem. Sci. 18:437-441.   DOI   ScienceOn
7 Synytsya A, Kim WJ, Kim SM, Poh l R, Synytsya A, Kvasnicka F, et al. 2010. Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohydr. Polym. 81: 41-48.   DOI   ScienceOn
8 Turner K. 1996. The Self-Healing Cookbook: A Macrobiotic Primer for Healing Body, Minds and Moods with Whole Natural Foods. ISBN 0-945668-10-4.
9 Uttara B, Singh AV, Zamboni P, Mahajan RT. 2009. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 7: 65-74.   DOI   ScienceOn
10 WIKIPEDIA 2015. Wakame (Cited 2015 May 13)The free encyclopedia: Available at http://en.wikipedia.org/wiki/ Wakame/
11 Ozsoy N, Can A, Yanardag R, Akev N. 2008. Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chem. 110: 571-583.   DOI   ScienceOn
12 Zhou DY, Tang Y, Zhu BW, Qin L, Li DM, Yang JF, et al. 2012. Antioxidant activity of hydrolysates obtained from scallop (Patinopecten yessoensis) and abalone (Haliotis discus hannai Ino) muscle. Food Chem. 132: 815-822.   DOI   ScienceOn
13 Zhou X, Meyer CU, Schmidtke P, Zepp F. 2002. Effect of cordycepin on interleukin-10 production of human peripheral blood mononuclear cells. Eur. J. Pharmacol. 453: 309-317.   DOI   ScienceOn
14 Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK. 2002. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J. Agric. Food Chem. 50: 3122-3128.   DOI   ScienceOn
15 Papas AM. 1993. Oil-soluble antioxidants in foods. Toxicol. Ind. Health 9: 123-149.   DOI
16 Prior RL, Cao G. 1999. In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic. Biol. Med. 27: 1173-1181   DOI   ScienceOn
17 Rafiquzzaman SM, Kim EY, Kim YR, Nam TJ, Kong IS. 2013. Antioxidant activity of glycoprotein purified from Undaria pinnatifida measured by an in vitro digestion model. Int. J. Biol. Macromol. 62: 265-272.   DOI   ScienceOn
18 Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, RiceEvans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237.   DOI   ScienceOn
19 Sánchez-Moreno C, Plaza L, de Ancos B, Cano MP. 2006. Nutritional characterisation of commercial traditional pasteurised tomato juices: carotenoids, vitamin C and radicalscavenging capacity. Food Chem. 98: 749-756.   DOI   ScienceOn
20 Shimada K, Fujikawa K, Yahara K, Nakamura T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40: 945-948.   DOI
21 Sugar AM, McCaffrey RP. 1998. Antifungal activity of 3’-deoxyadenosine (cordycepin). Antimicrob. Agents Chemother. 42: 1424-1427.
22 Dinis LT, Oliveira MM, Almeida J, Costa R, Gomes-Laranjo J, Peixoto F. 2012. Antioxidant activities of chestnut nut of Castanea sativa Mill. (cultivar ‘Judia’) as function of origin ecosystem. Food Chem. 132: 1-8.   DOI   ScienceOn
23 Huang D, Ou B, Prior RL. 2005. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53: 1841-1856.   DOI   ScienceOn
24 Je JY, Park PJ, Kim EK, Park JS, Yoon HD, Kim KR, Ahn CB. 2009. Antioxidant activity of enzymatic extracts from the brown seaweed Undaria pinnatifida by electron spin resonance spectroscopy. LWT Food Sci. Technol. 42: 874-878.   DOI   ScienceOn
25 Joung HJ, Kim YS, Hwang JW, Han YK, Jeong JH, Lee JS, et al. 2014. Anti-inflammatory effects of extract from Haliotis discus hannai fermented with Cordyceps militaris mycelia in RAW264.7 macrophages through TRIF-dependent signaling pathway. Fish Shellfish Immunol. 38:184-189.   DOI   ScienceOn
26 Kim YS, Lee SJ, Hwang JW, Kim EK, Kim EH, Moon SH, et al. 2012. In vitro protective effects of Thymus quinquecostatus Celak extracts on t-BHP-induced cell damage through antioxidant activity. Food Chem. Toxicol. 50: 4191-4198.   DOI   ScienceOn
27 Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y. 1996. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic. Biol. Med. 21: 895-902.   DOI   ScienceOn
28 de Julián-Ortiz JV, Gálvez J, Muñoz-Collado C, GarcíaDomenech R, Gimeno-Cardona C. 1999. Virtual combinatorial syntheses and computational screening of new potential anti-herpes compounds. J. Med. Chem. 42: 3308-3314.   DOI   ScienceOn