Browse > Article
http://dx.doi.org/10.4014/jmb.1409.09088

Radical Scavenging Activities of Tannin Extracted from Amaranth (Amaranthus caudatus L.)  

Jo, Hyeon-Ju (Department of Food Science and Technology, Seoul National University of Science & Technology)
Chung, Kang-Hyun (Department of Food Science and Technology, Seoul National University of Science & Technology)
Yoon, Jin A (Department of Food & Nutrition, Baewha Women’s University)
Lee, Kwon-Jai (Department of Advanced Materials Engineering, Daejeon University)
Song, Byeong Chun (Division of Food Bioscience, Konkuk University)
An, Jeung Hee (Division of Food Bioscience, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.6, 2015 , pp. 795-802 More about this Journal
Abstract
This study investigates the bioactivity of tannin from amaranth (Amaranthus caudatus L.) extracts. The antioxidant activities of the extracts from amaranth leaves, flowers, and seeds were evaluated. Tannin from leaves of amaranth has been evaluated for superoxide scavenging activity by using DPPH and ABTS+ analysis, reducing power, protective effect against H2O2-induced oxidative damage in L-132 and BNL-CL2 cells, and inhibition of superoxide radical effects on HL-60 cells. At a concentration of 100 µg/ml, tannin showed protective effects and restored cell survival to 69.2% and 41.8% for L-132 and BNL-CL2 cells, respectively. Furthermore, at the same concentration, tannin inhibited 41% of the activity of the superoxide radical on HL-60 cells and 43.4% of the increase in nitric oxide levels in RAW 264.7 cells. The expression levels of the antioxidant-associated protein SOD-1 were significantly increased in a concentration-dependent manner in RAW 264.7 cells treated with tannin from amaranth leaves. These results suggest that tannin from the leaves of Amaranthus caudatus L. is a promising source of antioxidant component that can be used as a food preservative or nutraceutical.
Keywords
Amaranth; antioxidant activity; tannin; superoxide scavenging activity; radical scavenging activity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Shahidi F, Wanasundara PK. 1992. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 32: 67-103.   DOI   ScienceOn
2 Martirosyan DM, Miroshnichenko LA, Kulakova SN, Pogojeva AV, Zoloedov VI. 2007. Amaranth oil application for coronary heart disease and hypertension. Lipids Health Dis. 6: 1-12.   DOI
3 Nakamura Y, Ohto Y, Murakami A, Ohigashi H. 1998. Superoxide scavenging activity of rosmarinic acid from Perilla frutescens Britton var. acuta f. viridis. J. Agric. Food Chem. 46: 4545-4550.   DOI   ScienceOn
4 Oszmianski J, Wojdylo A, Lamer-Zarawska E, Swiader K. 2007. Antioxidant tannins from Rosaceae plant roots. Food Chem. 100: 579-583.   DOI   ScienceOn
5 Oyaizu M. 1986. Studies on product of browning reaction prepared from glucoseamine. Jap. J. Nutr. 44: 307-315.   DOI
6 Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, RiceEvans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237.   DOI   ScienceOn
7 Yawadio Nsimba R, Kikuzaki H, Konishi Y. 2008. Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem. 106: 760-766.   DOI   ScienceOn
8 Yazdanparast R, Ardestani A. 2007. In vitro antioxidant and free radical scavenging activity of Cyperus rotundus. J. Med. Food 10: 667-674.   DOI   ScienceOn
9 Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555-559.   DOI   ScienceOn
10 Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 126: 131-138.   DOI   ScienceOn
11 Gülçin İ, Huyut Z, Elmasta M, Aboul-Enein HY. 2010. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 3: 43-53.   DOI   ScienceOn
12 Kim HW, Murakami A, Nakamura Y, Ohigashi H. 2002. Screening of edible Japanese plants for suppressive effects on phorbol ester-induced superoxide generation in differentiated HL-60 cells and AS52 cells. Cancer Lett. 176: 7-16.   DOI   ScienceOn
13 Kim HY, Sin SM, Lee S, Cho KM, Cho EJ. 2013. The butanol fraction of bitter melon (Momordica charantia) scavenges free radicals and attenuates oxidative stress. Prev. Nutr. Food Sci. 18: 18-22.   DOI   ScienceOn
14 Jimenez P, Cabrero P, Basterrechea JE, Tejero J, CordobaDiaz D, Cordoba-Diaz M, Girbes T. 2014. Effects of shortterm heating on total polyphenols, anthocyanins, antioxidant activity and lectins of different parts of dwarf elder (Sambucus ebulus L.). Plant Foods Hum. Nutr. 69: 168-174.   DOI   ScienceOn
15 Kalinova J, Dadakova E. 2009. Rutin and total quercetin content in amaranth (Amaranthus spp.). Plant Foods Hum. Nutr. 64: 68-74.   DOI
16 Kunyanga CN, Imungi JK, Okoth M, Momanyi C, Biesalski HK, Vadivel V. 2011. Antioxidant and antidiabetic properties of condensed tannins in acetonic extract of selected raw and processed indigenous food ingredients from Kenya. J. Food Sci. 76: C560-C567.   DOI   ScienceOn
17 Marikovsky M, Ziv V, Nevo N, Harris-Cerruti C, Mahler O. 2003. Cu/Zn superoxide dismutase plays important role in immune response. J. Immunol. 170: 2993-3001.   DOI
18 Athar M, Khan WA, Mukhtar H. 1989. Effect of dietary tannic acid on epidermal, lung, and forestomach polycyclic aromatic hydrocarbon metabolism and tumorigenicity in Sencar mice. Cancer Res. 49: 5784-5788.
19 Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200.   DOI   ScienceOn
20 Cai Y, Sun M, Corke H. 2003. Antioxidant activity of betalains from plants of the Amaranthaceae. J. Agric. Food Chem. 51: 2288-2294.   DOI   ScienceOn
21 Di Domeni F, Foppoli C, Coccia R, Perluigi M. 2012. Antioxidants in cervical cancer: chemopreventive and chemotherapeutic effects of polyphenols. Biochim. Biophys. Acta 1822: 737-747.   DOI   ScienceOn
22 Ferguson LR. 2001. Role of plant polyphenols in genomic stability. Mutat. Res. 475: 89-111.   DOI   ScienceOn
23 Czerwinski J, Bartnikowska E, Leontowicz H, Lange E, Leontowicz M, Katrich E, et al. 2004. Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol-containing diets. J. Nutr. Biochem. 15: 622-629.   DOI   ScienceOn