Browse > Article
http://dx.doi.org/10.4014/jmb.1409.09089

A Simple, Single Triplex PCR of IS6110, IS1081, and 23S Ribosomal DNA Targets, Developed for Rapid Detection and Discrimination of Mycobacterium from Clinical Samples  

Nghiem, Minh Ngoc (Institute of Genome Research, Vietnam Academy of Science and Technology)
Nguyen, Bac Van (Institute of Biotechnology, Vietnam Academy of Science and Technology)
Nguyen, Son Thai (Hospital 103, Vietnam Military Medical University)
Vo, Thuy Thi Bich (Institute of Genome Research, Vietnam Academy of Science and Technology)
Nong, Hai Van (Institute of Genome Research, Vietnam Academy of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.5, 2015 , pp. 745-752 More about this Journal
Abstract
Tuberculosis (TB) is the most common mycobacterial infection in developing countries, requiring a rapid, accurate, and well-differentiated detection/diagnosis. For the rapid detection and discrimination of Mycobacterium tuberculosis complex (MTC) from non-tuberculous mycobacteria (NTM), a novel, simple, and primer-combined single-step multiplex PCR using three primer pairs (6110F-6110R, 1081F-1081R, and 23SF-23SR; annealing on each of IS6110, IS1081, and 23S rDNA targets), hereafter referred to as a triplex PCR, has been developed and evaluated. The expected product for IS6110 is 416 bp, for IS1081 is 300 bp, and for 23S rDNA is 206 bp by single PCR, which was used to verify the specificity of primers and the identity of MTC using DNA extracted from the M. tuberculosis H37Rv reference strain (ATCC, USA) and other mycobacteria other than tuberculosis (MOTT) templates. The triplex PCR assay showed 100% specificity and 96% sensitivity; the limit of detection for mycobacteria was ~100 fg; and it failed to amplify any target from DNA of MOTT (50 samples tested). Of 307 blinded clinical samples, overall 205 positive M. tuberculosis samples were detected by single PCR, 142 by conventional culture, and 90 by AFB smear methods. Remarkably, the triplex PCR could subsequently detect 55 positive M. tuberculosis from 165 culture-negative and 115 from 217 AFB smear-negative samples. The triplex PCR, targeting three regions in the M. tuberculosis genome, has proved to be an efficient tool for increasing positive detection/discrimination of this bacterium from clinical samples.
Keywords
Clinical samples; Mycobacterium; single triplex PCR; IS6110; IS1081; 23S rDNA genes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Thierry D, Cave MD, Eisenach KD, Crawford JT, Bates JH, Gicquel B, et al. 1990. IS6110, an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res. 18: 188.   DOI
2 van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, et al. 1993. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J. Clin. Microbiol. 31: 406-409.
3 WHO. 2011. Global tuberculosis control. World Health Organization Report 2011.
4 van Soolingen D, Hermans PW, de Haas PE, Soll DR, van Embden JD. 1991. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J. Clin. Microbiol. 29: 2578-2586.
5 van Soolingen D, Hermans PW, de Haas PE, van Embden JD. 1992. Insertion element IS1081-associated restriction fragment length polymorphisms in Mycobacterium tuberculosis complex species: a reliable tool for recognizing Mycobacterium bovis BCG. J. Clin. Microbiol. 30: 1772-1777.
6 Wang JY, Lee LN, Chou CS, Huang CY, Wang SK, Lai HC, et al. 2004. Performance assessment of a nested-PCR assay (the RAPID BAP-MTB) and the BD ProbeTec ET system for detection of Mycobacterium tuberculosis in clinical specimens. J. Clin. Microbiol. 42: 4599-4603.   DOI   ScienceOn
7 Yang ZH, de Haas PE, van Soolingen D, van Embden JD, Andersen AB. 1994. Restriction fragment length polymorphism Mycobacterium tuberculosis strains isolated from Greenland during 1992: evidence of tuberculosis transmission between Greenland and Denmark. J. Clin. Microbiol. 32: 3018-3025.
8 Zelazny AM, Calhoun LB, Li L, Shea YR, Fischer SH. 2005. Identification of Mycobacterium species by secA1 sequences. J. Clin. Microbiol. 43: 1051-1058.   DOI   ScienceOn
9 Querol JM, Minguez J, Garcia-Sanchez E, Farga MA, Gimeno C, Garcia-de-Lomas J. 1995. Rapid diagnosis of pleural tuberculosis by polymerase chain reaction. Am. J. Respir. Crit. Care Med. 152: 1977-1981.   DOI   ScienceOn
10 Reimer LG. 1994. Laboratory detection of mycobacteremia. Clin. Lab. Med. 14: 99-105.
11 Singh KK, Muralidhar M, Kumar A, Chattopadhyaya TK, Kapila K, Singh MK, et al. 2000. Comparison of in house polymerase chain reaction with conventional techniques for the detection of Mycobacterium tuberculosis DNA in granulomatous lymphadenopathy. J. Clin. Pathol. 53: 355-361.   DOI
12 Rivero A, Marquez M, Santos J, Pinedo A, Sanchez MA, Esteve A, et al. 2001. High rate of tuberculosis reinfection during a nosocomial outbreak of multidrug-resistant tuberculosis caused by Mycobacterium bovis strain B. Clin. Infect. Dis. 32: 159-161.   DOI   ScienceOn
13 Roth A, Fischer M, Hamid ME, Michalke S, Ludwig W, Mauch H. 1998. Differentiation of phylogenetically related slowly growing mycobacteria based on 16S-23S rRNA gene internal transcribed spacer sequences. J. Clin. Microbiol. 36: 139-147.
14 Shah DH, Verma R, Bakshi CS, Singh RK. 2002. A multiplexPCR for the differentiation of Mycobacterium bovis and Mycobacterium tuberculosis. FEMS Microbiol. Lett. 214: 39-43.   DOI
15 Skuce RA, Brittain D, Hughes MS, Beck LA, Neill SD. 1994. Genomic fingerprinting of Mycobacterium bovis from cattle by restriction fragment length polymorphism analysis. J. Clin. Microbiol. 32: 2387-2392.
16 Society AT. 1981. Diagnostic standards and classification of tuberculosis and other mycobacterial diseases. Am. Rev. Respir. Dis. 123: 343-358.
17 Lee H, Bang HE, Bai GH, Cho SN. 2003. Novel polymorphic region of the rpoB gene containing Mycobacterium species-specific sequences and its use in identification of mycobacteria. J. Clin. Microbiol. 41: 2213-2218.   DOI
18 Kol AH, Schuitema AR, Kuijper S, van Leeuwen J, Hermans PW, van Embden JD, et al. 1992. Detection of Mycobacterium tuberculosis in clinical samples by using polymerase chain reaction and a nonradioactive detection system. J. Clin. Microbiol. 30: 2567-2575.
19 Kurabachew M, Sandaa RA, Enger O, Bjorvatn B. 2003. Sequence analysis in the 23S rDNA region of Mycobacterium tuberculosis and related species. J. Microbiol. Methods 54: 373-380.   DOI   ScienceOn
20 Mokaddas E, Ahmad S. 2007. Development and evaluation of a multiplex PCR for rapid detection and differentiation of Mycobacterium tuberculosis complex members from nontuberculous mycobacteria. Jpn. J. Infect. Dis. 60: 140-144.
21 McNabb A, Adie K, Rodrigues M, Black WA, Isaac-Renton J. 2006. Direct identification of mycobacteria in primary liquid detection media by partial sequencing of the 65-kilodalton heat shock protein gene. J. Clin. Microbiol. 44: 60-66.   DOI   ScienceOn
22 Minh NN, Van Bac N, Son NT, Lien VT, Ha CH, Cuong NH, et al. 2012. Molecular characteristics of rifampin- and isoniazid-resistant Mycobacterium tuberculosis strains isolated in Vietnam. J. Clin. Microbiol. 50: 598-601.   DOI
23 Mustafa AS, Abal AT, Chugh TD. 1999. Detection of Mycobacterium tuberculosis complex and non-tuberculous mycobacteria by multiplex polymerase chain reactions. East Mediterr. Health J. 5: 61-70.
24 Pietrzak J, Frei R, Senn HP, Moroni C. 1994. Comparison of polymerase chain reaction with standard methods in the diagnosis of Mycobacterium tuberculosis infection. Eur. J. Clin. Microbiol. Infect. Dis. 13: 1079-1083.   DOI
25 Falkinham JO 3rd. 1994. Epidemiology of Mycobacterium avium infections in the pre- and post-HIV era. Res. Microbiol. 145: 169-172.   DOI   ScienceOn
26 Collins DM, Stephens DM. 1991. Identification of an insertion sequence, IS1081, in Mycobacterium bovis. FEMS Microbiol. Lett. 67: 11-15.   DOI   ScienceOn
27 Drobniewski FA, Caws M, Gibson A, Young D. 2003. Modern laboratory diagnosis of tuberculosis. Lancet Infect. Dis. 3: 141-147.   DOI   ScienceOn
28 Eisenach KD, Crawford JT, Bates JH. 1988. Repetitive DNA sequences as probes for Mycobacterium tuberculosis. J. Clin. Microbiol. 26: 2240-2245.
29 Fomukong NG, Tang TH, Al-Maamary S, Ibrahim WA, Ramayah S, Yates M, et al. 1994. Insertion sequence typing of Mycobacterium tuberculosis: characterization of a widespread subtype with a single copy of IS6110. Tuber. Lung Dis. 75: 435-440.   DOI   ScienceOn
30 Kidane D, Olobo JO, Habte A, Negesse Y, Aseffa A, Abate G, et al. 2002. Identification of the causative organism of tuberculous lymphadenitis in Ethiopia by PCR. J. Clin. Microbiol. 40: 4230-4234.   DOI   ScienceOn
31 Kim BJ, Hong SK, Lee KH, Yun YJ, Kim EC, Park YG, et al. 2004. Differential identification of Mycobacterium tuberculosis complex and nontuberculous mycobacteria by duplex PCR assay using the RNA polymerase gene (rpoB). J. Clin. Microbiol. 42: 1308-1312.   DOI
32 Kirschner P, Bottger EC. 1998. Species identification of mycobacteria using rDNA sequencing. Methods Mol. Biol. 101: 349-361.
33 Klemen H, Bogiatzis A, Ghalibafian M, Popper HH. 1998. Multiplex polymerase chain reaction for rapid detection of atypical mycobacteria and Mycobacterium tuberculosis complex. Diagn. Mol. Pathol. 7: 310-316.   DOI   ScienceOn
34 Collins DM, Erasmuson SK, Stephens DM, Yates GF, De Lisle GW. 1993. DNA fingerprinting of Mycobacterium bovis strains by restriction fragment analysis and hybridization with insertion elements IS1081 and IS6110. J. Clin. Microbiol. 31: 1143-1147.
35 Alcaide F, Benitez MA, Escriba JM, Martin R. 2000. Evaluation of the BACTEC MGIT 960 and the MB/BacT systems for recovery of mycobacteria from clinical specimens and for species identification by DNA AccuProbe. J. Clin. Microbiol. 38: 398-401.
36 Britten RJ. 2005. The majority of human genes have regions repeated in other human genes. Proc. Natl. Acad. Sci. USA 102: 5466-5470.   DOI   ScienceOn
37 Cegielski JP, Devlin BH, Morris AJ, Kitinya JN, Pulipaka UP, Lema LE, et al. 1997. Comparison of PCR, culture, and histopathology for diagnosis of tuberculous pericarditis. J. Clin. Microbiol. 35: 3254-3257.