Browse > Article
http://dx.doi.org/10.4014/jmb.1409.09071

Identification and Characterization of an Antifungal Protein, AfAFPR9, Produced by Marine-Derived Aspergillus fumigatus R9  

Rao, Qi (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration)
Guo, Wenbin (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration)
Chen, Xinhua (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.5, 2015 , pp. 620-628 More about this Journal
Abstract
A fungal strain, R9, was isolated from the South Atlantic sediment sample and identified as Aspergillus fumigatus. An antifungal protein, AfAFPR9, was purified from the culture supernatant of Aspergillus fumigatus R9. AfAFPR9 was identified to be restrictocin, which is a member of the ribosome-inactivating proteins (RIPs), by MALDI-TOF-TOF-MS. AfAFPR9 displayed antifungal activity against plant pathogenic Fusarium oxysporum, Alternaria longipes, Colletotrichum gloeosporioides, Paecilomyces variotii, and Trichoderma viride at minimum inhibitory concentrations of 0.6, 0.6, 1.2, 1.2, and 2.4 μg/disc, respectively. Moreover, AfAFPR9 exhibited a certain extent of thermostability, and metal ion and denaturant tolerance. The iodoacetamide assay showed that the disulfide bridge in AfAFPR9 was indispensable for its antifungal action. The cDNA encoding for AfAFPR9 was cloned from A. fumigatus R9 by RT-PCR and heterologously expressed in E. coli. The recombinant AfAFPR9 protein exhibited obvious antifungal activity against C. gloeosporioides, T. viride, and A. longipes. These results reveal the antifungal properties of a RIP member (AfAFPR9) from marine-derived Aspergillus fumigatus and indicated its potential application in controlling plant pathogenic fungi.
Keywords
South Atlantic; antifungal activity; plant pathogenic fungi; ribosome-inactivating protein;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Skouri-Gargouri H, Gargouri A. 2008. First isolation of a novel thermostable antifungal peptide secreted by Aspergillus clavatus. Peptides 29: 1871-1877.   DOI   ScienceOn
2 Stirpe F. 2013. Ribosome-inactivating proteins: from toxins to useful proteins. Toxicon 67: 12-16.   DOI   ScienceOn
3 Taylor BE, Irvin JD. 1990. Depurination of plant ribosomes by pokeweed antiviral protein. FEBS Lett. 273: 144-146.   DOI   ScienceOn
4 Wnendt S, Ulbrich N, Stahl U. 1994. Molecular cloning, sequence analysis and expression of the gene encoding an antifungal-protein from Aspergillus giganteus. Curr. Genet. 25: 519-523.   DOI
5 Woo J-H, Kitamura E, Myouga H, Kamei Y. 2002. An antifungal protein from the marine bacterium Streptomyces sp. strain AP77 is specific for Pythium porphyrae, a causative agent of red rot disease in Porphyra spp. Appl. Environ. Microbiol. 68: 2666-2675.   DOI
6 Xu J, Wang H, Fan J. 2007. Expression of a ribosome-inactivating protein gene in bitter melon is induced by Sphaerotheca fuliginea and abiotic stimuli. Biotechnol. Lett. 29: 1605-1610.   DOI   ScienceOn
7 Zhang G-P, Shi Y-L, Wang W-P, Liu W-Y. 1999. Cation channel formed at lipid bilayer by Cinnamomin, a new type II ribosome-inactivating protein. Toxicon 37: 1313-1322.   DOI   ScienceOn
8 Zhang Y, Mu J, Feng Y, Kang Y, Zhang J, Gu P-J, et al. 2009. Broad-spectrum antimicrobial epiphytic and endophytic fungi from marine organisms: isolation, bioassay and taxonomy. Marine Drugs 7: 97-112.   DOI   ScienceOn
9 Parente D, Raucci G, Celano B, Pacilli A, Zanoni L, Canevari S, et al. 1996. Clavin, a type-1 ribosome-inactivating protein from Aspergillus clavatus IFO 8605. cDNA isolation, heterologous expression, biochemical and biological characterization of the recombinant protein. Eur. J. Biochem. 239: 272-280.   DOI   ScienceOn
10 Rateb ME, Ebel R. 2011. Secondary metabolites of fungi from marine habitats. Nat. Prod. Rep. 28: 290-344.   DOI   ScienceOn
11 Parkash A, Ng TB, Tso WW. 2002. Isolation and characterization of luffacylin, a ribosome inactivating peptide with antifungal activity from sponge gourd (Luffa cylindrica) seeds. Peptides 23: 1019-1024.   DOI   ScienceOn
12 Peumans WJ, Hao Q, van Damme EJ. 2001. Ribosome-inactivating proteins from plants: more than RNA N-glycosidases? FASEB J. 15: 1493-1506.   DOI
13 Pu Z, Lu B-Y, Liu W-Y, Jin S-W. 1996. Characterization of the enzymatic mechanismof γ-momorcharin, a novel ribosome-inactivating protein with lower molecular weight of 11,500 purified from the seeds of bitter gourd (Momordica charantia). Biochem. Biophys. Res. Commun. 229: 287-294.   DOI   ScienceOn
14 Lamy B, Moutaouakil M, Latge JP, Davies J. 1991. Secretion of a potential virulence factor, a fungal ribonucleotoxin, during human aspergillosis infections. Mol. Microbiol. 5: 1811-1815.   DOI   ScienceOn
15 Rodríguez-Martín A, Acosta R, Liddell S, Núñez F, Benito MJ, Asensio MA. 2010. Characterization of the novel antifungal protein PgAFP and the encoding gene of Penicillium chrysogenum. Peptides 31: 541-547.   DOI   ScienceOn
16 Selitrennikoff CP. 2001. Antifungal proteins. Appl. Environ. Microbiol. 67: 2883-2894.   DOI   ScienceOn
17 Skouri-Gargouri H, Ali MB, Gargouri A. 2009. Molecular cloning, structural analysis and modelling of the AcAFP antifungal peptide from Aspergillus clavatus. Peptides 30: 1798-1804.   DOI   ScienceOn
18 Li Y, Gong H, Sun Y, Yan J, Cheng B, Zhang X, et al. 2012. Dissecting the role of disulfide bonds on the amyloid formation of insulin. Biochem. Biophys. Res. Commun. 423: 373-378.   DOI   ScienceOn
19 Ng TB, Parkash A. 2002. Hispin, a novel ribosome inactivating protein with antifungal activity from hairy melon seeds. Protein Expr. Purif. 26: 211-217.   DOI   ScienceOn
20 Marx F, Binder U, Leiter E, Pocsi I. 2008. The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cell. Mol. Life Sci. 65: 445-454.   DOI
21 Marx F, Haas H, Reindl M, Stöffler G, Lottspeich F, Redl B. 1995. Cloning, structural organization and regulation of expression of the Penicillium chrysogenum paf gene encoding an abundantly secreted protein with antifungal activity. Gene 167: 167-171.   DOI   ScienceOn
22 Galgóczy L, Kovács L, Karácsony Z, Virágh M, Hamari Z, Vágvölgyi C. 2013. Investigation of the antimicrobial effect of Neosartorya fischeri antifungal protein (NFAP) after heterologous expression in Aspergillus nidulans. Microbiology 159: 411-419.   DOI   ScienceOn
23 Meyer V. 2008. A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value. Appl. Microbiol. Biotechnol. 78: 17-28.   DOI
24 Olson B, Goerner GL. 1965. Alpha sarcin, a new antitumor agent I. Isolation, purification, chemical composition, and the identity of a new amino acid. Appl. Microbiol. 13: 314-321.
25 Palicz Z, Jenes Á, Gáll T, Miszti-Blasius K, Kollár S, Kovács I, et al. 2013. In vivo application of a small molecular weight antifungal protein of Penicillium chrysogenum (PAF). Toxicol. Appl. Pharmacol. 269: 8-16.   DOI   ScienceOn
26 Galgóczy L, Virágh M, Kovács L, Tóth B, Papp T, Vágvölgyi C. 2013. Antifungal peptides homologous to the Penicillium chrysogenum antifungal protein (PAF) are widespread among Fusaria. Peptides 39: 131-137.   DOI   ScienceOn
27 López-García B, Moreno AB, San Segundo B, De los Ríos V, Manning JM, Gavilanes JG, Martínez-del-Pozo Á. 2010. Production of the biotechnologically relevant AFP from Aspergillus giganteus in the yeast Pichia pastoris. Protein Expr. Purif. 70: 206-210.   DOI   ScienceOn
28 Geisen R. 2000. P. nalgiovense carries a gene which is homologous to the paf gene of P. chrysogenum which codes for an antifungal peptide. Int. J. Food Microbiol. 62: 95-101.   DOI   ScienceOn
29 Kovács L, Virágh M, Takó M, Papp T, Vágvölgyi C, Galgóczy L. 2011. Isolation and characterization of Neosartorya fischeri antifungal protein (NFAP). Peptides 32: 1724-1731.   DOI   ScienceOn
30 Lee DG, Shin SY, Maeng C-Y, Jin ZZ, Kim KL, Hahm K-S. 1999. Isolation and characterization of a novel antifungal peptide from Aspergillus niger. Biochem. Biophys. Res. Commun. 263: 646-651.   DOI   ScienceOn
31 Lam SK, Ng TB. 2001. First simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji) together with evidence for synergism of their antifungal effects. Arch. Biochem. Biophys. 393: 271-280.   DOI   ScienceOn
32 Choudhary N, Yadav O, Lodha M. 2008. Ribonuclease, deoxyribonuclease, and antiviral activity of Escherichia coli-expressed Bougainvillea xbuttiana antiviral protein 1. Biochemistry (Moscow) 73: 273-277.   DOI
33 Batta G, Barna T, Gaspari Z, Sandor S, Kövér KE, Binder U, et al. 2009. Functional aspects of the solution structure and dynamics of PAF - a highly stable antifungal protein from Penicillium chrysogenum. FEBS J. 276: 2875-2890.   DOI   ScienceOn
34 Cao A, Hu D, Lai L. 2004. Formation of amyloid fibrils from fully reduced hen egg white lysozyme. Protein Sci. 13: 319-324.   DOI   ScienceOn
35 Chen Z, Ao J, Yang W, Jiao L, Zheng T, Chen X. 2013. Purification and characterization of a novel antifungal protein secreted by Penicillium chrysogenum from an Arctic sediment. Appl. Microbiol. Biotechnol. 97: 10381-10390.   DOI   ScienceOn